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ALGEBRAIC GEOMETRY ONE CENTURY AGO!

Photocopy of the index of KLEIN's book:

On RIEMANN's theorv of Alzsebraic Functions and their Integrals
(1880) , Dover (1963) '

i
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FF B » »

Steady Sireamings in the Plane a3 an Interpretation of ths
Funstioms ol 24+ . - . . . . . .

Conxideration of the Infinities of w=/(s} . . . .

Bational Functions and Lzeir {ntegrals.  Derivation of the
Infaitizs of higher Order from thoxe of lower Order [

Erparimental Production of these Streamisgs . -

Trecsitioa W the Surface of & Sykere ::Lrum.ngs oa
artitrary awved Surfaces

Conapection between the [orsgoing T’:eory and ths Fum:ucm
of & complex Argument . .

Streamings on the Spbere resumed B.Lmuxm‘x gmz:d
Problem & . . . . e e e . .

PART IL
RIIWINY'S THEORY.

Clmification of closed Surfices according to tha Valus of
the Integer p . -
Prelizinary Determination of steady Strnmmg: ca armtrxry
Sarfaces

The most ztne'zl ste:.dy Stmxm'ug. Prool o{ tha Impossi-
bility of other Streamings . ..

liustration of the Streamings by means of Exzmola

On ths Campmmon of the most general Function of Praition
fom single Summands . . . ., . .

7 ¥es 4

28 & u

4

S 1 Steady Streamings in the Plane as an Interpretation
of ths Functions of z +1y. ,

The physical interpretation of".:those funetions of =+1y
which are deait with in the f{ollowidg pages is well knowm®.
The principlea on which it is based are here indicated, solely
for completeness.

Letw=n+i7, s=< + 1y, 0w =f(2). Then we have, primarily,

dw v Ou v
(}) g-a'yl f‘;"“a;r
znd kence
mddao,[brv, ’
™
) Q‘Pa?ﬂo.

* I purticular, refaraacn shenld be made to MaxweD's Treatite on Elesimiclly
oxd Nagnetiom (Cambrides, 1873). o far w1 the intaitive trestmeat of the
sabject is ooocsrned, his poiot of miaw ia exsctly that sdoptad in the text.

Cct. DIEUDONNé's article D-HISTORY (cf. Bibliography) for accurate

details.
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CHAPTER O

INTRODUCTORY. MATERTAL -

The impatient reader should start in CH. 0, §1, then Ch. I, §3, etc.

and perhaps read the prior paragraphs only if and when he needs.

FOREWORD

These notes were primarily written from tape recordings of CROTHENDIECK's lectures during
his visit at SUNY43 in thz Swwmar of 1973. FHowever, these recordings were supplemenied by
zercises, references to classtcal algebraic gecmetry, historical comments and concrete

quotations of such "Bibles' as SCA, EGA, ete.

GROTHZIDIECK himself does not assume any respenstbility for the publication of these notzs;
I believe however taat since no adequate "itextbooks” exist tocday and the original publications
present consideradle difficulties to the begirnen a publication of this kind will help a much
wider aqudience. This is intended as an intreduciion to the sources SGA, EGA,...: with concrate
referances to Ch., ¥ and page number, I have corpleted the bibliography by referring to other
tntroductory publications such as the DIEUDONNE articles, MUITORD's lecture notes, sic. HMost
of them contain sketchy or ro preofs at all, or trey cre addressed to a different pe O-Iw
rzader, cf. MACDOIALD-Schemes, nadcpassed to classical alnebraic geomzters). I hope that these
lecture notes, diracted primarily %o beginning graduate students, will bridge the gep, betu_‘?fn
the previously rmentioned lacture notes and the sources. To aid the newceomer, the reader will
find many more details than is customary in tnformal publications of this type. I took advan-

ty

2
2

e —
(J)The brackets | _] in tezt refer to my interpalations (P. Gaeta).
(Z)T'ne names or authors and/or titles of bocks, papers, etc. between " " refer to the
Bibliography. f
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tage of some of the oral repetitions to insert "summaries’ at che beginning of most paragraphs
(mostly using the tape-recorded lectures, or my own tniiiative {f I could rot find any better

source) There are many complete proofs, and others are almogt complete with very few, really
tpivial details left to the recder.

" cal’ algebraic geometry was csswmed although
gebraie curves or surjaces, etc. In many
iied mathematicions and in the Swmrary of
<me” algebraic gecmetry based on the study
L 115 might seem conirary to GACTHINDIECK's '
1< thful to nis current vhiloscpnical or socio-
logical worries. In his pricr visit o Euffalo, and in many other places as well, GROTEESDIZCK
npatgned against ezrert »’otc";-’ec';e and ‘tachnology. How can we ignors that mony geople feel
disappointed if they do not seze ine words alga:oz‘azc curve or surface cn pace one in an Algzbraic
Geometry text? Or they complain 'a priori”, just oy "hearscy” that trere is « lot of algebra
and categorical language but - where is the geometry? I try to overccma these zsychological
difficulrties or prejudices tn order to emphasize the major simplificaiions introduced by
GROTHENDIECX. The introduction for applied mathematicians is addiressad to arny person with a
bachelor degree in Mathematics but 1t should be wnderstood also by theoretical physicists and

engineers. ..

Fo knowledge of "old-time" or
CROTHENDIECK himself gave exarples inve
points, especially in the introducis
the course, I tried to dutld somz Zridsg
of algebrcic varietiss instead
mathematical spirii, tt is deft

I hope that very soon after a Final revision of the whole ccurse the second part dealing
vith the category of echemes will appear.

l I am grateful to many colleagues and studerts in the audience who hglp{d me i’.‘ preparing
these note;, matnly: J. Duskin, B. Fell, L. Gupta, 3. Emsh?r, y. Kaz.c-rz*;noyf,,z’»:’. Xlun,

I. Ozaki, F. C. Lin, S. Schanuel, G. Sicf:emar}, J- Winthrop by coz*rec'tﬂ:r}g all_m_nds ‘o_f
mistakes, typographical, linguistic, mathematical..., and I an espec“’,.a'f.«,_gl.gz‘a?ej‘ul first of
all to GROTHEZNDIZCK who was so kind with everybody and so generous iin ms'tzme; Ee lectured
several times for periods of almost seven hours, with only a few short breaxs. Wro can
believe that he is not interested in Mathematics anymore?

Last but not least, I am very grateful too to the typist, Mrs. Gail Berti, for her
excellent job and her angelic patience, correcting and retyping the manuscript dozens of iimes
and mever once pretesting.

BUFFALC, Jume 1574

FEDERICO GAETA - _ !
M -

rl-).. . PROPAGANDA FOR APPLIED MATHEMATICIANS. Not more than one century ago the distinction
between pure and applied mathematics was to & large extend artificial and unimportant. For
instance KLEIN's lictle book On Riemann's Theorv of Aleebraic Functions and their inteerals
(1880) , (Dover, 1963) (cf. sample reproduction of the index), introduced the scudy of
Riemann surfaces by considering the practical physical problem of laminar fluid flow in a plane
or arbltrary suriace. He even quotes MAXWELL's treatise on page one!

" The natural continuation of such "transcendental approach” in ocur times is the study of
complex algebraic manifolds, developed by considering compact XKAHLZR manifolds of the HODGE
type. Although this type of analysis provides one of the most beautiful "entrances® to the
edifice called Algebraic Geometry it is not considered as the wost fundamental one. The main
Pentrance" during mauy years, after MAX NOETHER (around 1970) was the true "algebraic~geometric”,
originally related to the study of distinguished projective models of algebraic varieties and
consequently to the tseory of invariants. The classical paper of BRILL-NOETHER (Math. Ann. 1974)
laid the foundations of '"gecmetry om an algebraic curve" from the birational point of viewS®In
this approach the applicability and concreteness was still very clear and never questicned.
Gradually the influence of algebra, mainly commutative algebra became more and more important
and increasingly more and more abstract, The presentation of the topics became more and more
detached from the applications. .

(I)I am particularly grateful_ to M, Barry Fell for many valuable suggestions in writing this §0.
(2)

Twvo 1mdudibt=—41ge5§:aic varieties are birationally equivalent {ff their fields of rational
functions are {somorphic, Classical algebraic geometry considered mainly biracional classes
of {rraducible aslgebraic variecies.

0-0-1
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! Today, for many colleagues, GROTHENDIECK's Algebraic Ceometry looks like one of the most

abstract and unapplicable products of current machematical thought. This prejudice caused harm
even before the students of mathematics within the U.S. were worried about the scarcity of
academic positions... . If they ever heard GROTHENMDIECK deliver one of his Survival talks againstC
modern Science, research, technology, etc.,... their worries might beccme unbearable. &hen he
ssked the audience about the uscfulness of those things I recall the classical examole: how could
KEPLER formulate his laws on Celestial mechamics if the Greek would never study «the comic sections?
Electromagnetism was also mentioned, and its potencial harmful consequences discussed. He is a
very liberal man and in spite of that he allowed us ro use plenty of tape recorders!

We want to show that although GROTHENDIECK's original presentation looks very abstract
and seldcm deals with possible applications, his inspiration is very concrete. ‘

In contrast with Algebraic Geometry, the popular beliefs regarding Differential Geometry
are totally different. Differential Geometxy never lost its flavor of appliecability. For
propaganda, I would like to show in this introductiom that such practical structures as
differentiable manifolds are natural examples of locallv ringed spaces. Thus, if a reader is
acquainted with differenciable manifolds, GROTHUENDIECK's schemes cannot look so terribly
abstract.., . It is true, we do not assume knowladge of differentiable manifolds as a lozical
prerequisite for this course, but 2 student interested in appiications should be interested in
differentiable marnifolds.

The purpose of this informal introduction is to develop an analogy between these new
mathematical objects introduced by GROTHENDIECK and certain objects within the structure of
Mathematical Physices. .

1 will select an application which is of interest to me. Consider the ”cénfiguracion space’
Vﬁ or the "phase space” wZn of an holonomic dynamical system with "n-degrees of freedom';
although old books are not very precise, it is clear that for many problems conceruing Vn we
should only consider local functioms £: U 9 R defined within an open set U vy . For

instance a Lagranglan coordinate function 9y (1 =1,2,...,n) 1s only defined-locally for a

certain coordinate chart , The lagrange equations of motion é% q%%ﬁ - gEL = 0 are valid.
: : i i

only in certain loczl coordinate systems (q1,¢=.,qn) . To examine the behavior of the
dynamical system globally we must piece together local functions corresponding to different open
sets U .

This is achieved by first verifying that the set of functions {f: U4+ R| U Vn} form a
commutative ring with unit under pointwise addition and multiplication for each U . Denote this
ting by I(W . If V< 0 then there is a natural Testriction map r:: (W »T(V . The map
r: assigns to every : U+ R its restriction with respect to V , i.e. rj@p) = @‘V: v-+R .

In other words the local C ~differentiable functions on U form a sresheaf' (cf. Ch. III).

" Hext we must consider the "germ" of f£: U 4R at any point x €U . Let f: U-=*R and
g VR belocal functicns; then £ and g are equivalent'fuactious, f ~ g , if they agree on some subset
veoun V(%aﬂ?he germ of £ at the point x € W denoted by x{ is the equivalence class of
functions determined by this relatioun. WNote that this definition appears implicitly in elementary
“eomplex analysis’ in ome variable.
It 18 easy to verify that the germs xE for all x € Y form a local ring (in the modern
technical sense). Thus, with the additiom of certain topological sophistications, we define the

“sheaf of germs of local C”-differenciable functions on MH" , denoted by Gg G§X in the text,

X & topological space), as the disjoint sum U & of the local rings, & , for every
x€H M,x ",x
point of M . Thus the differentiable manifold Vn or wZn of Classical Mechanics (or for
0-0-2
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itﬁht matter any differentiable manifold) {s an example of a locally ring2d space (X,Gx) , Lie.
a topological space X with a structure sheaf @x .

In spite of this heavy terminology, a sheaf of gcrms is really an old idea which has been
made precise through a new and useful sophistication. These "abstract ideas are not naturall;
abstract. Although they can be introduced in an abstract manner, they can be discovered
"experimentally" by working with classical examples.

Sheaves vere introduced to provide a transition from local to global properties. In this
regard, the global study of curves which solve the classical equations of motion (a difficule
problem) has been simplified by the introduction of sheaves. If we agree with LICHNEROWICZ
,that the most concrete model of differentiable manifolds is the "configuratioaspace", then sheaf
theory appears to transform a concrete problem into an artificially abstract one, purely for
technical or asthetic reasons. However, according to the modern approach, non-singular
Algebraic Varieties can be regarded as particular cases within Algebraic Geometry when the
ground field is restricted to R or [ . Even in the abstract case, SERRE proved in his famous
paper FAC that the ZARISKI topology can be used to extend the sheaf theoretic ideas to more
general abstract algebraic varieties. In this way SERRE followed H. CARTAN's idea of replacing
the "field of rational functions” of an irreducible algebraic variety V by the sheaf of germs
of local regular fuactions of V {(which no longer need to irreducible). GROTHEMDIECK's schemes
are also locally ringed spaces (X,Gx).(1 :

It would be dishonest to ignore here certain new complicactions: a differentiable manifold
is BAUSDORFF, a scheme S is uot even Il , it is just TO ; L.e. for any couple of points

x,y € S there exist an open neighborhood of one of them which do not contain the other, but
this relationship is not symmetriec in x,y . In other words a single point x £ 3 is not
necessarily closed; theclosure {x} of {x} may be very big... We shall come back to this
#n Vol.II. 1In this Vol. I we shall deal mainly with the building blocks of the schemes, the
so~called affine schemes(Ch. III)(or affine algebraic spaces, cf. Ch.'fz;j

1. PREREQUISITES We shall assume familiarity with the basic algébraic structures: groups,

rings, fields; the volumes of "BOURBAKI - COMMUTATIVE ALGEBRA" contain everything we are
golng to use. The treatise of 'ZARISKI~-SAMUEL", although somewhat old fashioned, is also

useful. We assume familiarity with the elements of general topology, topological spaces,
contimious maps, including sheaf theory. The standard reference for sheaf theory is "GODEMENT's"
book. [ A short introduction to this topic can be found in the short course on 'TOPOI" given in
SUNY at Buffalo, May 1973, inspired by SGA-4. .

~ In addition, the reader is supposed to be familiar with the language of category theory:
(t.e. the definition of category, of functors from a category to another, the category of
functors between two given categories,...and also perhaps the notion of anm adjoint functor.)
fThe concept'.of a representable functor of a category C to the category of sets, as well as
the category .of covariant representable functors C - Sets, plays a big role in this course
from the very beginning. I include the minimum needed to follow GROTHENDIECK's lectures in §1

of Chapter {J
[2. swoary oF voL. I

In spité of all GROTHENDIECK's revolutions, algebraic geometry is

still a "geometrical theory of equatioms’. ‘This is made clear in Ch. I

starting with a very general system of polynomial equations S=={fjfTi)==o} with
arbitrary index sets I,J with coefficients in a ground ring k (commutative,

with unit)(z). Weshallconsidersolutions(ai) (i € I with cocrdinatesa, belongingt:

(I)Ihzse spaces are c#lled geometrical spaces by DE MAZURE-CABRIEL because those which do not
have 2z & do pot séem to have enough geometrical interest...
X

(2)The rings cousidered here will be commutative rings with unit. Any ring homomorphism

£f: A 2 B preserves the unit (f(lA) = lB) . Cf. ch. I, §2.
0-2-1
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l any k-algebra (cf. Ch. I, §2)in particular we do not restrict ourselves

. . I
to solutions in _k~ ., Then to every k-algebra k' corresponds a subset

Vs(k')Cf k'l ang to every homomorphism of k-algebras k' 5 k' corresponds
a map Vs(f): VS(R’) - Vs(k”) . Thus, technically, we have a covariant
functor from the category Gk of k-algebras to the category of sets.<l)
Cho I and IT are devoted to the study of this functor. There are two points of

view: intrinsic and extrinsic, depending on whether or not we want to

ignore any affine embedding. Our main concern is, by far, the intrinsic

one. As a consequence two systems of equations S, S' (possibly with

) 4 . .
(1°,3") # (I,1) ara ragarded as equivalent iff the correspondine functors

VS’VS' are equivalent. For a fixed I , the problem is reducédrto the case that

- . £ \ £
ier - Then J77 = V37-Vg .

But if we want to avoid 'the ambient affine space' iEIG: ”kI”) we need to intro-

S is an ideal T of the polynomial ring Po= k[Ti]

duce the algebra Ag = PI/S . Then the main result is that the intrinsic

functors @k - Sets that we are looking for are the covariant reprasentable

functors: V,: k' » Hom (A,k') attaching to a variable k' the set of
k-alg G)
k-algebra homomorphisms from A to k' . / Such a functor, denoted by

L @

VAC3)’ ZA or simply by X is called the affine algebraic space over

represented by the k-algebra A . Explicitly it is described as follows:

An "intrinsic" k'-valued point P of EA is a k-alg. homomorphism P: &4 - k':

()

This very simple example can ve used to introduce the "categorical" or functorial language
2t & very early stage, since every high school graduate should know systems of equations...

The reasons why Vs is a functor and not a set are discussed in Ch. I.

cg)Agaia, we encourage the reader with little familiarity with categories to learn the =motion
of reprasentable funccors in this very concrete case. The fact that we do not use any
particular property of the category Gk is very clear. Cf., Ch. I, §1 for furcher infor-
mation.

g)The V notation stands for (algebraic) '"variety'; although we shall not deal systematically
with these old subjects of sctudy of classical algebraic geometry, they still play a censi-
derable central role. :

'(%)IB the case k= Z, ¥ {is called an absolute (¢ over Z) affine algsbraic space. '

0=2-2
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As a consequence, we have these three trivial facts:

a) the set of k'-valued points EA(k') is the same as Hom (A,k'): -
k-alg

;A(k') = Hom ((a,k'") .
k-alg

b) the map k'w EA(k')  defines a covariant functor GA -+ Sets

¢) to any homomorphism h: A -+ B of k-algebras, there corresponds

a map in the opposite direction:

] |
R NSEENS

defined by composition in the only sensible way. a), b) redefines the

functor of solutions k' m ;A(k') in an intrinsic way: EA is the (covariant)

representable functor Gk - Sets represented by A . c¢) expresses the fact

that the covariant representable functors ;A (A € Obﬁk) form a bategory
equivalent to the opposite category G; of Gk and the map A - §A defines

(2)

N -]
a contravariant functor Gk - Gk .
The previous categorical properties do not tell us anything specific
(3)

about the category of k~-algebras or its ''geometrical interpretations'.

On the conﬁrary, in Ch. III we shall attach a_geometric object, the so-called

affine scheme defined by A= (X,SX). which is a particular case of a so-called
locally ringed spacefa) to the functor EA - Before summarizing this,

"

‘Dlt this looks "too abstract” consider the embedding EA(k')Co k'l , check that the coor-
dinates of P" are the values P(gi) of & system of generators and then disregard the

goordinstes... .
‘“)m. property is true in any category G .

e)Se- previous footnote.

(;’!)A ringed space (X,8))
sheaf sx on X . Most of the geometrical structures in modern mzthematics are ringed

spaces; for instance any kind of manifolds (topological, differentiable, amalytic). They
are topological spaces X with a sheaf of germs of local functions of the corresponding
type (continuous, differentiable, analytic,...). "Locally ringed" means that the stalks
are local rings. Cf£. Ch. III, §7 for further details. .

is a pair comsisting of & topological apace X plus a structure

0-2-3




I shall very briefly recall here what the geometrical meaning of k-algebras
is, in order to firmly establish the links between old-time algebraic
geometry, Geometry as a whole, and current applicatioms.

In classical algebraic Geoemtry k 1is the field of complex numbers:
k =%  and we look for solutipns in £ (n = #i)gl) The set V = VS(E) is
defined as an "algebraic variety' and the restrictions f|V to V of
polynomial functions £: th » L form a finitely generated T-algebra 4 .
A 1is isomorphic to E{Tl,.,.,Tn][Jf where Jg denotes the radical of 3(2)

(HILBERT's Nullstellensatz)FB) As a consequence A 1s an algebra without

non~trivial nilpotent elements. Conversely if A is a finitely generated
reduced T-algebra, A can be identified With the T-algebra of t-&alued
polynomial functions om an algebraic variety (for instance in iEB if V# E3
V consists of finitely many irreducible surfaces, finitely many irre-

ducible curves and finitely many points. In

particular V_ is irreducible iff A is an integral

domain(é) In classical Algebraic Geometry the

finitely generated I-algebras with non trivial

0 . k¢ nilpotent elements(s) had no geometric status whatso-

ever, GROTHENDIECK opposes this view, because such

a) y
“Whether J has finite or infinite elements has no importance because of the fact that the

ideal T generated by S has a finite basis, after HILBERT's Bagissatz.

2 .
{ )‘rhe radical o of the ideal o of A is the set: Jo = {a €AlEn € Z+}am €a} ;

obviously e Da . a is a radical ideal 1ff o =,/g . In particular JO is the
Rilradical of A , denoted by Nil(A) .in this course; A 1is reduced iff NIl A = 0, i.ec.
the only nilpotent element of A is Zero. {cf \5ig,

&) . : .
The original statement (good for any algebraic closad field k) is that {f f vanishes in
211 the "zeros" (Nullstsllen) of the {deal a then £ €ga for some positive integer =m .

(4)

A commutstive ring with unit {s an inte
gral domain £ff A - {0} 1s mulciplicatively ¢ d
i.e. 1 €4 - {0}, a,b €A-{0l=abto. (03 te mletoltencioely close ’

&)
An element f of the ting A is called nilpotent L1ff £~ = 0 for some integer w2 0

(cf. footnote (2) of page 9). Applied mathematicians, engincers, etc. introduce nilpatent

elements any r{ th d " i !
oy g...me ey disregard "infinitesimal quantities' of order z h , by wricing

- 0=2-4
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1

e
i
.
|
-
i
i

‘ algebras represent infinitesimal objects... (cf. Ch. I, §13).

Thus to help his geometrical intuition the reader should think of any
k-algebra (not necessarily finitely generated over an arbitrary ground ring
k , as before) as a natural generalization of the algebra of polynomial
functions on V , (the problem is to 'recover V from A 1in some sense’’).

If WcV, the restriction of polynomial functions defines a surjective

homomorphism AV - Aw of the corresponding rings of polynomial functions
k3 on V and W . But since non-reduced algebras had no status, classical

L algebraic geometry could not be '"functorial' (functors were not explicitly

defined, but were ''used” implicitly repeating often intolerably, long

statementS...).

The geometrical object (X,@X) , the affine scheme attached to any

? A€ Oka , or equivalently the affine algebraic space I% represented by

A is a very powerful refinement of the old notiom of algebraic variety.

The space~ X is the‘sgectrum of A , Spec A where Spec A is

the set of all prime ideals of A) (X =¢ 1iff A =0) . The

topology of X is defined in terms of the radical ideals of A 1in a manner
inspired Sy the ZARISKI topology of affine spaces. (CE£ I, §14). Spec (4)

alone does not allow us to recover A because Spec A is homeomorphic

with Spec(A/Nil A). Thus, in order to comstruct spectra it is sufficient
to restrict ourselves to reduced algebras. The structure sheaf @X together
with X enables us to recover A because A= IYX,@X) = HO(X,GX) , i.e.

A is isomorphic with the ring of global sections of the sheaf @X ® A

£ is the Oth cohomology k-algebra of X , with coefficients in @X). The {

i
H
3

0-2-5




definition of @X is quite technical but we can mention here that the stalk
at every point p € Spec A 1is the local ring AD . Actually all the
constructions make sense in the category ( of commutative rings with unit.

(1)

Note that k has no role in the construction -

CHAPTER I

FUNCTORIAL DESCRIPTION OF THE SETS OF SOLUTIONS

OF SYSTEMS OF POLYNOMIAL EQUATIONS

l Question:...We understand your worries about expert knowledge,...by the way,
if we try to explain to a laymen what algebraic geometry is it
seems to me that the title of the old hook of ENRIQUES is still

adequateu): What do you think?
GROTHENDIECK's answer: Yes! but your "layman" should know what a system

" of algebraic equations is. This would cost years of study to
PLATO. . ! :

Question:...It should be nice to have a little faith that after two thousand
years every good high school graduate can understand what an

2affine scheme is...What do you thinok?...?
7.

teesnavsersovsanen

From a 1{rzle Survival ralk with GROTHENDIECK.

SUMMARY., Let S = {fj (Ti)} (1 €1, 1 €3 1indicate an arbitrary sysc:m<2) of polynomial
equations fj (Ti) = 0 with coefficients in a commutative ground ring with unit k . We study
the set of solutions Vg (kH, &' ¢ Obﬁk) 3 in an arbitrary k-algebra. The map k' » Vs(k')
"defipes a covariant functor Ck -+ Sets. Our main problem is to characterize these functors
(up to equivalence) independent of any affine embedding VS (k") c*IIEI . The solution is: a

functor ak - Sets is\equivalent to some Vé iff it is equivalent to some ?.A defined by

[} N e : 1 '
k' E, (") = om o (AD) (Y k' € 0vG)

(1)1'1‘115 looks psychologically disturbing. The ring of coefficients of our original system of
equations disappears.... Not completely! There is always a howomorphism h: Z- A
(a#n-l), thus A contains a ring Z/mZ (m) = kerh) where m is the characteristic
of A . Even the enemies of GROTHENDIECK's approach to algebraic Geometry agree that
schemes are particularly useful for arithmetic problems...Z plays a universal role.

(Q)MIQUES: YGeometrical theory of equations...”, not necessary at all to follow this course.
(‘S)Cf.
(€Y}

Summary of the course.

/A

cf. §2, Gk denotes the category.of k-algebras. TFor k = Z (ring of integers), G ,=C 1is
the category of commutative rings with unit. ’
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where 4 = PI/Q (g = PI'S Is an {dcal of the polynomfal ring PI = k[ri)iél
IA i{s represented by A, and a functor Gk 4 Sets 1s cquivalent to scome VS iff {t is

*

rcgrescnta§l: . (cf. §D) IA is called 2n affine algebraic space over k . 7To particular

for A = PI B IP = EI is the standard affine space of tvos I
I

fact that the functors I, are the objects of 2 caterary Affk equivalent to the opposite

A

cetegory G2 of G, » Inparticular for k =12, AEEZZ= Aff {s the category of "absolute"

({.c. over Z) affine algebraic spaces, opposite to the category (G of cotmutative rings
with unit,
Be divide Ch. I in two parts, the first part deals with the proof of Affk = G; . The

sccond part deals with some particular subcategories of G , having important geomstrical and
histerical meaning.

REMARK, Ch. I follows the tape very closely., The contents s almost fdentical to the Intro-

duction to the nzw Springer edition of EGA-1. No further use of this material is made in

*%
EGA-Springer. ) A recall on representable functors and k-algebras {s added {n §1, 2,
CROTUENDIECK started in §3. ’

PART I

THE ISCMORPHISM 4ff, 3 G;

SUMMARY. In order to characterize the VS as Tepresent

lence Vs ~ V? (g = PI‘S) (cf. §6) and then we prove V? ~ EA (A = Pr/;) (cf. §7)

of the universal property of A . Conversely any & € Oka can be obtained as a §uotient and -

-

any ZA comes from some V

¢

1. REPRESENTABLE FUNCTORS. CATEGORIES OF FUNCTORS Hem(C, Sets) AND
Hom(c°, Sets)y & CATEGORIES S/C AND - C/S<.l) Let A € ObC be a fixed

object of the category C . The map

(1.1) X + Hom, (4,%)

* : : s
( )§l contains all the necessavy prerequisites on representable functors, borrowed from
GROTHEMDIECK's Buffalo courses on Toool and algebraic groups.
(x+) ) . . )
The lecture notes of MANIN also start with this same approach, however HANIN przsents
coasiderably less details than in this course.

)

This sectlon is borrowed mainly from the Buffalo AAG-course, for several reasons, mainly

to avoid 2 "wess" confusing differenc hypothnasis I preferred to rewrite the whole topic by
mysc}f. For further reading we recormend 0-Advances, IL, page 376 (without proafs) or
Fondements, page 195-01. A formal treatment is given in E£GA-Springer, Ch. 0, §l, page 1

9.
The sonvces are TOHOKU and SGA, 3, I. ’

I-1-1
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able functors, we establish the equiva-
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! assigning to X the set(l) of C-morphisms from A to X 1is functorial
in X, i.e. it defines a covariant functor VA: C - Sets , which is called
C - Sets represented by A .

4

the covariant functor
X Y 1is

In fact (1.1) defines the map ObC - Obi{Setsh Besides, if

a morphism in C then there is a natural map
v, (D)
(1.2) Homc(A,X) —_— HomC(A,Y)

defined by left composition with f , i.e. uw feu , Vu € HomC(A,X)
ho: et @sers by

Similarly, we can define a contravariant functor A

(1.3) b, (X) = Hom, (X,A)

and @A(f): hA(Y) - hA(X) for every C—morphism X 2 Y where

T v € Hom, (Y,4)

(1.4) hA(f) = vyeof

to Sets represented

h,: C - Sets 1is the contravariant functor from C

by A .

REMARKS.
can be reduced to the other case by

D .
Of course either one VA 5 hA

Q
introducing the opposite category C .

2
)Both types of functors VA s hA

The main examples needed in this course arise in Algebraic Geometry when

appear very often and naturally.

For any pair of objects X,Y € 0b(, HomC(X,Y7 is a set. We did not study any foundartional
O0bC 1is a class (not necessarily a set); or,

)

aspects of category theory. For some authors

following GROTHENDIECK (SGA 3), it can be a big set satisfying certain properties which is
¢,

called a universe.
@)z 0 ) , :

c & the opposits category of C 1i.e. Lt has the same objects and the same arrows as
with the direction and the order of composition of arrows reversed. !

I-1-2
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C is the category Gk of k-algebras (where k is a fixed ground ring,

commutative with unit) (cf.v§2) or its dual G;(l) . In fact the elements

(ring homomorphisms) u € Hmna (A,k") (k' € Oka) are k'-valued points(z)
k
of the affine algebraic space represented bv 4 .

A covariant (contravariant) functor F from C to Sets is called

representable by the object A € 0ObC 1iff F 1is equivalent to some VA(hA).

If this is the case the representing object A 1is determined up to iso-

morphism. 1In order to make clear this statement we need to formalize the
. : o E
previous definition by introducing the categories Hom(C,Sets) (Hom((C , Sets))-
of covariant (contravariant) functors from C to Sets. According to well- :
) . . .
known recipes an object of Hom(C,Sets) 1is a covariant functor: :

F: C > Sets. If F,G € Ob (Hom (C,Sets)) a morphism u: F =+ G 1is a

natural transformationm, i.e. for every A € ObC there exists a map
u(d): FQA)Y 3 GQ)
sach that for every C-morphism f: A 4 B we have a commutative diagram:

£
TA) —— F(3)

(1.5) o a(A) J{ : lum
: . 143}
- C A c(®)

In particular u 1is aun equivalence if the vertical arrows u(A) are

equivalences for any choice of A € 0bC.

. - ’
(I)Precisely the fact that G‘k can be identified naturally with the category of the so-ralled

affine algpebraie spaces over k  is the main result of this Ch. I. ,

Ratvely: points with cocrdinatass in &k’ (we do not want coordinazas,...).

CH) - : ~
If G,B8 are two categories Funct(G,8) = Hom@,3) (the categorv of covarianr functors
G +8) has as morphisms the natural transformations.

I-1-3
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We leave to the reader the case of Hom (C , Sets), i.e. of the category

of Set-valued contravariant functors).

The category Hom (COJ Sets) will be denoted by c. Consequently
¢° = Hom (C, Sets). ¢ is a natural enlargement of C obtained by identi-
fying any object X € 0b(C with the contravariant functor hX "represented

by X"; h is the contravariant functor from C to sets defined by

hX(Y) = HomC(Y,X) . In fact, the embedding functor

(1.6) i: Co C
defined by
(1.7) iX) = hX ¥ X € 0bC

is a fully faithful functor(l) from C to & which enables ué'to consider

(3)

C as a full subcatggory(2> of C . The objects of the essential image

of C by 1 are the so-called contravariant representable functors.

The covariant representable functors, used extensively in this Ch. I

~ . . °
are obtained by applying the "~ -construction to the opposite category C .

In other words: we can define an embedding

(l)A functor F: C -+ 8 1is faithful 1iff for every psir of objects 4,3 € 0bC the induced map
Hom(A,B) = How(F(A),F(B)) is injective., A faithful functor is called fully faithful 1iff
for every choice of A,B the previous map is bijective. If F is faithful, F(C) 1is a
subcategory of 8§ . If F is fully faithful the category, F(C) is a full subcategory of

D . (cf, footnote (2)).

2
( )Let X,Y be two objects of a subcategory B of a category G . Then we have a natural
injection HomB(X,Y) < Hom (X,Y) , i.e. every morphism in £ is also a morphism in G .

8 is a full subcategory of G iff for every pair of cbjects X,Y € 0b§ the previous
inclusion is an equality:

Homg (X,¥) = Hom, (X,¥)

€3)Let: 1: &€ 2 3 be a fully faithful functer from &€ to JF . The essential image of &£ 1in

F 1is the full subcategory (cf. footnote (3)) of JF whose objects are equivalent to those of
the tmage 1) i.e. F € 0b3F belongs to the essential image of & 1ff IX € 0b€ such

7

that F = 1(X) .

I-1-4
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(1.8) j: ¢ = C

of C in the category of covariant functors from C to sets by j(X) = jX

being defined as Y & jX(Y) = HomC(X,Y) . The covariant representable

We can summarize these considerations as follows:

‘ N
1 functors from C to Sets are those of the essential image of C by 1§ .
= HomC(X, ) from C to

There are functors hX =vHomC( ,X) and jX

Sets of type

(1.9) Yo hX(Y)V= Hom,, (7,%) Y P 5 (D) = Homg (X, 1)

and transforming C-morphisms Y -+ Z by composition in the only possible

° :
way. Thus hx is a contravariant functor: C - Sets and jX is a :

covariant functor C - Sets. We say in both cases that hX {resp jX)

is a contravariant (covariant) functor from C to Sets represented by X .

More generally:

A contravariant (covariant) functor F from € to Sets is called

representable iff there exists an object X € 0bC such that F = hX

)'H In both cases we say that X is an object of C repre-

(or

~ iy
senting the functor F . It is clear that if X'~ X in C then X'

re T TR S e L

represents: F iff X represents F . In other words: the representing

(D

object X 1is defined up to isomorphism.

REMARK. In most cases a contravariant (covariant) functor F repre=

sented by X will be identified with hX (or ]

) on the precedent
(2) '

X

notions will be sufficient.

1)
(2

We leave the easy verification to the reader.

This doesn't cause any problem as long as we are not concerned about unique iscmorphism.

I-1-5.
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In the more sophisticated questions it is necessary to emphasize the

choice of a distinguished element £ &€ F(X) which is the image by the set

equivalence y%: Sets - Sets of the identity lX € Hoqc(X,X) = hX(X)
(= jX(X)) . In fact in the contravariant case a morphism Y f Z in C
induces a commutative square
hx(ﬂ 1
b (2) 5= b (1) X
(1.10) @ lyxm 7z (© J

[YA)]

F(Z) ——> F()
Ffi

and, in particular_ for Z = X we have a map hx(f): hX(X) - thY) such

.that (hx(f))(lx) =f . £ has the foilowing universal property:

(1.11) (rg (M) (D) = FD) ) -

As a consequence when we distinguish F from its equivalent hX by

means of the concrete aquivalence: Y P yX(Y)
(1.11) . yk(Y): hX(Y) =+ F)

we can say that F 1is completely determined by the representing object
X € 0bC and the distinguished element £ = (yX(X))(IX)

We leave to the reader the consideration of £ in the covariant case

as well as the corresponding conclusion.that F 1is uniquely determined by
X and the universal element £ € FX) .

From this more concrete point of view becomes more correct to define

I-1-6
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F as representable iff there exists a couple x,8) X €‘Ob(» and
€ € F(X)) such that € has the universal property quoted above.

In the previous paragraphs the object X was fixad. Now we are going
to let X mové in the class ObC and we shall consider the previous
representable functors as objects of two new categories (whose morphisms

are the natural transformations) denoted by GROTHENDIECK with the generic

name of base changes (for both variancies). Lat us distinguish the two

cases:

Contravariant case: Y - Hom(Y,X) = hX(Y) ¥Y € 0bC

These contravariant representable functors for a variable X € 0b(C

are the objects of a category naturally isomorphic to (€ (with canonical

isomorphism X+ hX + This is a fully faithful functor which allows us to
identify C with a full subcategory of the category ¢ = Hom(C®, Sets)
(1)

of contravariant functors from C to Sats.

Covariant case: X - Hom(S,X)

Similarly the covariant representable functors i can be identified

X
with X regarded as objects of the bpposite category C° .(2) In other %

: e ~ - - 3
words: The opposite category G of (" is canonically isomorphic with i

the category of covariant representable functors.

Let X be a fixed-objeét of a category C ; we are going to define

two categories .S/C, C/S whose objects are C-morphisms of source (target)

S respectively and whose morphisms are C-arrows making the corresponding :

triangles commutative

(1)

This canomical embedding C< ¢ enabled GROTHENDIECK in TOHOKU (cf. ch. II, §1,2) to redice
the 1§i_m constructions to the set theoratic case. . ’

(2 ,
)j can be used to dafine the lim constructions (Cf. ch. 11, §3,8).

1]

I-1-7
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u € 0b(S/C) = u: s - X, u € 0b(C/S) e u: X, 7S
¢ E AT (/) = 5 ——> X P € ArT(C/S) o X - > 5
I .
\‘!’(’o yV]/Y
X, X,
u=@ev U = ve ";"

where as usual ObC, ArrC denote the classes of objects and of arrows

of C . An object ¢C of C 1is called an initial object of C 1iff for
every X € 0bC there exists just one morphism ¢C -+ X . Obviously any
two initial objects of C are isomorphic. The category of Sets has as
initial object the empty set. |

Dually an object e of C 1is called a final object iff fér every
X € ObCl thefe exists just one morphism X 2 e ., One-point setéAare

final objects in the category of sets. Any two final objects are isomocrphic.

0f course an initial (final) object of C becomes final (initial) in CQ.

If C has an initial (final) object @C(e) we can identify C with

¢C/C (or C/e) in an obvious way.

2. THE CATEGORY C'k OF k-ALGEBRAS. our starting point will be the study of solutions

of a very general system of polyncmial equations with coefficlents in a commutative ground ring
with uniz k . But we caonot restrict ourselves to solutions in k , but rather we shall look
for solutions in an arbitrary k-algebra k' ., We shall recall what these k-algebras mean from

& categorical point of view.
Let (G be the category of commutative rings with unit; a morphism

(or "arrow'™ in (G is a unit-preserving ring homomorphism £: A 2 B

(A,B € 0bG) , i.e., f satisfies the following conditions (2.1), (2.2), (2.3):

1-1-8 I-2-1
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l (2.1), (2.2) f(x+vy) = £(x) + £(y) flxy) = £(x)£(y)
(2.3) : f(lA) = lB

The ring Z of integers is an initial object of (. (CE. §1) 1In

fact, any arrow ¢: Z - A maps (1 +1 + 3+ 1) in f(m'lA) , thus

© 1is unique and determined by the condition (2.3). ¢ 1is not necessarily

injective. @(Z)=z Z/aZ where m(= 0) 1is the characteristic of A

If A 1is a field, them m = 0 or any prime number.
*
Let k be any ring( ) of G . The objects of the category of
h .

morphisms k + A (in G) are usually called, for short k-algebras, i.e.
according to general categorical procedures we construct the category Gk
of k-algebras as follows:

1) . . - h

An object of Gk is a morphism k + A ,

Usually by abuse of language A is called a k-algebra and k 1is

called the structural morphism. We should keep in mind that h should be

known.
2) , u . u . .
A morphism of k 9+ A in k 2+ B in the category Gk is a morphism

o A =+ B such that the following triangle-

w A

A— 3

commutes.

Since, as we said, the morphism u,v are "clear", the following

terminology is widely used:

To k E A corresponds an extermal product kXA 4 A defined by

(*)"ging" means always an object of G , i.e. a commutative ring with identity. ’

I-2-2
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{(Lﬁ \,2) = (hQ))a = a®))

In particular since h(lk) = lA (1,a) » a and this scalar multiplication

kXA 2 A 1is added to <+’.’1A> as an extra-structure in such a way that

the following properties

(2.6) A(a + b) = xa +2Ab
(2.7) A(ab) = (\a)b = a(\b)

are satisfied. Using this approach the category Gk of k-algebras contain

as objects the k-algebras, i.e. rings k' €0bG endowed with a structural

morphism h: k # A and a morphism ¢: A » B of k-algebras is a morphism

of ( commuting with scalar multiplications

(2.8) : ©Qa) = ro(a) a €A NEKk

Since, for a given k the k-algebras are particular cases of rings

it may look at first sight that the study of k-algebras would be "more

restrictive'. It is not so however, because of the fact that Z is an

initial object of G and every unit preserving ring homomorphism A -+ B

commutes ‘with Z -multiplications. In other words,

The category (G of commutative rings with unit and unit preserving

ring homomorphisms is identical with the category Gﬂl of Z ~alesebras

and 7Z -homomorphisms.

3. IDENTIFICATION OF POINTS IN k'I WITH HOMOMORPHISMS OF k-ALGEBRAS.

SIMMARY. If k' ¢ Oka (cf. §1), and I 1is an arbitrary index set, any point x € k'l
(the standard affine space of type I over k') defines a homomorphism ¢ of k-algebras:
x

. 1 : :
€c Py 7 k' of the polynomial ring P = P, = [E(Ti)iél} where T, is a family indexed by I
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of algebraically independent indeterminates adjointed to k , Conversely, any such homomor-

phism u determines a unique point (U(Ti)>iEI € k'l . '

Let us begin by considering the usual state of affairs in algebraic
geometry or in arithmetic: 1let k be a commgtative ring with unit. 1In
the classical situation k 1is the field R or T of real or complex numbers
but in mahy arithmetic problems k may be the ring Z of integers or the

ring of integers in a number field... . 1In any event, let us fix k for the

time being and will be referred to as the ground ring.

Let P = PI be the ring of polynomials with coefficients in k 1in a
set of indeterminates Ti indexed by a set 'I(“>,

(3.1) ' P=P =k (T.)

I i'1€1 |

Obviously PI € ObC%(, i.e. PI is a k-algebra generated by the Ti , 1 €1, .
= c J 1 £ 1

Let x (xi)iEI (xi €k, Vi € I) be a family of elements of k §

k1(1)

indexed by I . x 1is called a_point of the standard affine space

of type T .

Let f € PI be a polynomial; £ defines a function kI + k , which

PR ——

sometimes i's denoted with the same letter, although it might not determine
back f -uniquely. Let us call it now f to avoid abuse of language:
£

t: kI - k. is defined by assigning to every x € kI the element f£(x) of

k obtained by replacing the indeterminate Ti by X, for every 1 €1 .

More generally we can define Ek" also as a function k'’ 4 k' where k'

—
! ( )Wc do not assume I to be necessarily finmite, although in many classical cases I = {{},
{1,2}, = {1,2,3},...(set of equations in the affine line, plane, 3-space...). This

generality is justified later by technical reasoniLJ

i

‘
1 .
1) kI is the power set & get of all the maps: I +k . Of course if I = [1,2,,.,,3} the

:
:
i-
i
H
{

notation is shortemed by k" . In GROTHENDIECK words: EI is the Cartesian power of

1
exponent I of the forgetful functor E~ which associates to every k' ¢ Oka its
underlying set.
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is any k-algebra.
k'Y(Y i € 1) defines

m

Let us fix x € k'I ! Then the map 1im X, (

: u
a homomorphism P_ - k' of k-algebras by f(Ti) r f(xi) cf. §2, 12.8

I
I
that can also be writtem as =x = ¢ (x ekhH, €. € Homk_alg(PI,k') where

the image ex(f) of the polynomial £ € PI by the (k-alg)-homomorphism

¢ 1is the element f(xi) obtained from £ by replacing T, by X
x
¥i €1 . In fact, we can immediately vérify the characteristic properties

I
. o t
of a (k-alg.)-homomorphism for every fixed point x of the affine space k .

. TR SR .
Comversely any u € Hom, ¢, (PI,k') defines a point of k'T, l.e. it has the form e_.

4, SOLUTION SETS Vs(k') WITH COORDINATES IN A k-ALGEBRA.

r—;UHHARY. We disregard the arithmetic problem of looking for k-valued solutions of our
system S of polynomial equations, as being "too difficult’. Scme justifications are given
for the easier algebraic geometric problem, studied by KAHLER and GROTHENDIECK of looking for ~
solutions {n arbitrary k-algebrai;J

Consider a certain family of polynomials (fj)j’.I’ where J
is another fixed arbitrary set of indexes. The usual intérpreta;ion

of the "system S of polynomial equations”
4.0 S) fj(x)'= 0 jed

comes to mind. Our first thought about the problem of investigating the

PR

solutions of such equations consists in looking for the points x €k
such thar fj(x) =0 ¥ 3&€J; this point of view arose in the classical

case of the affine plane over R , L gl) When k. is fixed in this way a

(I)For instance, let us assume that § cousists of the equations.of a line L and & circle

C 1in the Euclidean real plane. If L and C do uot meet we “accept'' the two complex
solutions € BZ,... . Intersection problems, lead from R to L at the very beginning

of classical algebraic geometry.
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number of problems arise, which may be deep and hard to solve, for

instance:
1) Does any solution of the system S , exist?

/

2y If therg is any solution, are tﬁe total number of solutions finite
or infinite?

3) 1If the former case, can we give some>estimate, either exact or
approximate, of the number of solutions?

4y In the latter case, the.number of solutions might become finite
if we add certain inequalities, or can we give asymptotic formulas for these
estimates when the parameters assﬁme certain limit values. For instance,
in the plane let us look for solutioﬁs contained in a certain square
centered at the origin with sides parallel to the axes and let us ask ébout
the asymptotic estimates when the length of side converges to «,..

The answers that we obtain to these questions will be extremely
different according to the nature of the ring k . For instance comparing
R, T the fact that T is algebraically closed and R is not makes a
big difference. Further, if k 1is a finite field or if we take k fo be

A

the ring of integers the kind of answers we obtain are considerably different.

These Probléms are the hardest. This is arithmetic. We are going to look
at a somewﬁét'different approach by allowing the solutions to vary not
only in Kt , i.e. "the standard affine space of type I"; but in any !
where k' is any k-algebra; and we shall look at the sets Vs(ﬁ) of

solutions of this system of algebraic equations for variable k' as a

functor k' Vs(k') with respect to the variable k' . Affine algebraic

geometry, roughly speaking, will be the study of such (and cldsely related

I-4-2
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functors).

r—- The classical device of passing from real solutiomns to complex solu-

tions for systems of algebraic equations with real coefficients can be

considered as the first step in this direction (k' =R, T =R[l,i],...,CE.

footnote (1) in page 23 ). However, classical geometers always thought of
keeping fixed some field: first T , then any algebraically closed field,
accepting variable "definition fields" in a remedial basis. Without the
functorial language, the description of the solutions with coefficients in
arbitrary k-algebras, due to KKHLER, and. then especially to GROTHENDIECK,

would be very cumbersomgij

5. THE FUNCIOR VS: Gk - Sets DESCRIBING THE SOLUTIONS OF S .i

SUHI"ARY:_ Although affine embeddings are avoided, very often, we define first the functor
EI (2£fine line_ar space of type I), from k-algebras to ssts assoclating to any k' € Oka
the affinas space }EI(k') = %' gith coordinatas im k': k! = k’I o

Let S be an arbitrary system of polynomial equations of type (I,J) with coefficients

in the ground ring % . The funcror VS of solutions (=2 ‘'algebraic variety defined by k)

ean be introduced first as a subfunctor of EI: VSC’EI . VS waps every k-algebra k' inro

.
the set of solutions of § in the affine space EI(k') o (lLater ve shall gez rid of E7).

Using GROTHENDIECK's own words:
...For a variable k-algebra k' [€ 0bqG, , cf. §1] we look at the
affine space k'I . We would like to interpret k'I as the set of k-algebra

. 1 - 1
homomorphisms from PI to k [I:e. as Homﬁk(PI,k_Zf {cf. 32),
(5.1) k't 5y (P.,k') =E (k")
Omk=alg I’ . ?
where this bijection is functorial with respect to k . This functor,

(5.2) E: G = Sets ,

Tgéfined by k' = Homak(PI,kil] is called the standard affine space of

I-4-3 I-5-1
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type I over k . The functor EI is regresented(h)

by the k-algebra PI.

The points of iEI(k') are called the k'-valued points of iEI (for
every k' € Oka).

Now if we have a bunch of polynomial equations
(5.3) fj(x) =0 jeyd

indexed by an arbitrary index set J (fj(Ti) € PI (c£. 81), ¥ 3 € )
and we look at the set Vs(k') < EF(k') of all points of ]EI(k') hich
satisfy S for a variable k' (€ Oka)_ we obtain a subfunctor k' w» v_ (k')
of k' m ET(®) =k'T. °

The study of this bunch of equatioﬁs S from the point of view of

algebraic geometry is the study of this functor VS .

Even in the classical case, when k is a field, for instance, the
field R of the reals and the number of equations and indeterminates is
finite, it may happen that the set VS(R) is empty, for instance: look

2

at the case.of the single equation in one variable x~ + 1 =0 or at the

22 : ‘ ‘ :
case x +y =0 1in the real plane. However we do not consider that

the "variet;es" defined by either one of these equations are tfivial;
because oveg'suitable R-algebras these equations have solutions: for
instance, if we take k' =T.¢€ Gﬁ( (the field of complex numbers) we.
obtain the two solutions + i in the first case or the whole continuum

of complex~valued points of the imaginary circle in the second. So if we
restricted ourselves to the real case we would have practically no informa-

tion about the system S 1if we are not allowed to consider a variable

™ The neophyte can realize how simple is this notion of representable functor in this

eoncrates case neaded here: EL: G, - Sets; we have k' 4IEI(k') =g (PI,k’),
. g
V¥ k-alg. morphism k' < k" inducas EI(u): Hom(PI,k') -+ Hom(PI,k") in an obvious covariant

way, It i{s clear that we did not use any particular property of the category Gk . Cf.
§1 for tha main definitions of representabls functors.
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k' € ObC%{; the geometric properties should be invariant under any base
change (in the previous examples the property of VS(EU being empty 1is
not something invariant under base change).

At the end we add some historical motivations to introduce ZEI 5 VS

instead of restricting ourselves to k , in particular R,I,...

Let us first introduce the standard affine linear space over k of
o I(1)

t to be a functor EZI from the category Gk of k-algebras to

the category of sets which associates to every k' € Oka (e k' is a

k-algebra) the affine space k'L , namely

(5.4) EL: G, - Sets
(5.5) E': k' o k'L Tk' €O0bC,

Now, let us consider a morphism

(5.6) ' u: k' =+ k"

in G i.e. a (k-alg)-homomorphism. cf. §2.

We have an induced map:
(5.7) Bl kT ok e x)..oo (a(x))
B ) T itiel i’7iel

Thus ﬁEI is actually a functor EI: Gk -+ Sets,

THE FUNCTOR VS: -now, let us consider the system S of equations

(5.1) with coefficients in k , as a system of equations with coefficients

® EI. will appear soon as a particular case of the most general affine algebralc spaces;
that is why we wrote linear, although affine linear may look redundant. This terminology
agrees with the customary consideration of affine algebraic varieties and affine spaces.
GROTHENDIECK refers to it often as the standard affine space of type [I.
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in k' and we look for the set of solutions
(5.8) V(") =[x € k'llfj<x> =0, 7, €3}
Then for every homomorphism (3.4) of k' into k" , and every point
in kI which satisfies S , the image in k”I satisfies the same set of
equations, i.e. V (k') goes into Vo (k") . Using functorial notations,

we have: k' 5 k" ip the category Gk goes into

. 1 t
(5.9) Vg (s Vg (") 4 Vg (k")
in the category of sets.

In other words:

Our system of equations S defines a subfunctor VS of ]EI ; from

Gk to the category of sets:
Vv
) 3 I . .
(5.10) k' @ {x € k' 1fj(x) =0, Vj €I} CE (" = k!

i.e. Vs(k') is the set of k'-valued solutions of § .

The set Vs(k') is called a closed algebraic subset of the affine

space ﬁE;(k') o(l)

rEXAMPLES AND HISTORICAL MOTIVATION. Besides the fact thatrthe arithmetic problem (& to

find Vs(k)) q}ght be very difficult, we saw that in some cases Vs(k) is empty, for instance

; X 3 2 n
in the case of ‘the imaginary quadrics z X +1 ina R . To the inclusfion R corresponds

i=1
. c»vs(r) « It is obvious that such transitions from the real to the complex domain are old

and very frequent. Several problems both algebraic and arithmetic lead to the extension of the

ground field k (cf. DIEUDONNE, Advances, I). Then the new problem ari;es of comparing points
with coordinates in different extemsion fields k',k" . They cannot be compared at all if both.
are no subfields of a third field. A. WEIL introduced his universal domain Q (a field of
infinite transcendence degree over its prime field) assuming that all peeded extensions are
subfields of (1 . GROTHENDIECK does not need the ground field and rejects 1. As a conse-
quence he considers the different Vs(k') for variable k' (where k' are k-algebras, after
a suggestion of KKHLER) and introduces instead the systematic consideration of the functor v
: S

’

renouncing to the unique set Vs(k) Yalgebraic variety" (fixed k) represented by s,

Geometrically the k-afgebras play the role of "k-valued functious’ over VS »  (The k-alg,

bomemorphism satisfied S as well as the "constant” points with coordinates in k), They were
used in classical algebraic geometry under the name of "coordinate rings': k' = k[gl, £}
ey
n

(l)we shall soon see a motivazion for this terminology based on the so-called ZARISKI topology
on affine spaces Kl (ef. Ch. I, §14).
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of affine ivreducible algebraic varieties in the particular case that k 1is a grouand field,

for instance k = ¢ and I = {1,2,...,n} finite. Then -k[gl,...,gn} is a finitely generaced

integral domain. §l,§2,...,§n are the coordinates of VAN DER WAERDEN flgemeine Punke'. k"

-

is {somorphic with the quocient ring of the polynomial ring k[xl,...,xn] by a prime ideal J .

. We shall see that in the gerneral case of GROTHENDIECK evary k' can be representad by
PI/3 where J 1s an arbitrary (oot necessarily prime) ideal of the polynomial ring PI in

an arbitrary set (Ti}iEI of indetarminates. For I fixed, to different ideals of PI corres-

pond different functors. If we want just k-valued points Ehis is false, for instancs

2 3
12 +3y - 1=0 and (XZ + yz -1 =0 and (x + yz ~_12)m = 0 define the same sez complex-
valued solutions for every m 2 1 , thus the principal ideals (x2 + yz - l)m @=1,2,,..)
define all the same VS(E) . Cf. pext i} .

6. INTRINSIC STUDY OF VS AND EMBEDDING VSC*IEI .

SUMMARY. Our algebraic-geometric problem has been reduced to the study of the subfunctor VS

of EI and we will counsider two different questions: a) Intrinsic study of 'VS , b) Study

of embeddings V C»]EI . These two points of view are parallel to discinguishing intrimsic

properties of cuZves or surfaces independent of any embedding in 3-space (or a-space, n’z 3
from those depeuding on the curve or surface and the embedding, in elementary differential

geometry.

a
The subfunctor VS can be viewed in two different ways: 2first as

an intrinsic study of the functor Vs , (considered up to isomorphism),

which is just the study of a functor from the category Gk of k-algebras
to the category of sets. Thus VS and VS’ (where S' is another system

of equations possibly with different index sets I',J' defined over the

same ground ring k) and b) second as the study of the particular properties

of the embedding V “*EF .

S
1
( )An example of viewpoint a) is found in the study of real

EXAMPLE.
or complex algebraic varieties lying in some affine space of finite dimension
N , independent of the embedding (in such a way that for N # N' it makes
sense to define an equivalence relation identifying certain pairs of affine
varieties). For instance the reader can think of algebraic curves or

surfaces embedded in real or complex three space, When we take into account

some particular embedding of the same varieties, we have an example of b).

1)

A classical example where one indesd uses outside points 1s the consideration of polar
curves, tangent lines, normal lines,...etc...in thé non intrinsic study of algebraic plane
eurves. The intrinsic study i1s higher and more sophisticated.
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The new fact is the functorial approach; k' 1is variable! (instead of
keeping R, or T fixed as in elementary differential or classical algebraic

geometry) The distinction between intrinsic and extrinsic properties is old.

7. REDUCTIQN TO THE CASE COF S = IDEAL OF PI .

STMMARY., r'I—‘;E) systems S, s? of polynomial sguations (of type (I,n, (T%,3") ik
coefficients in k are considered as equivalent, 1iff the two functors of solutions

€3]

VS,VS,: ak -+ Sets are equivalenr.

Let us keep. I fixed, or what is the same the "ambient gpace? E' . We can enlarge S

with all the finite linear combinations T gjfj gensrating an ideal J = PI-S af PI .
je3
Then V. ~ V, , thus we can restrict ourselves to the study of functors of type V; (3 ideal

S

. (z)
of PI) . Moreover if F #3J (g, T ideals of PI) the functors V?, VK are not equivalenty

in othar words:

. I
We shall sea now that there ig a (l-1)-correspondence between the subfunctors of E

that can be described by sets of polynomial equations and the subfunctor defined by all the
{deals T of PI :I :

Now, whether our point of view is arithmetic or geometric, a first
observation coming to our minds is that &e can in many ways enlarge the
system of equatiomns 3 'without changing the solutions either in the
ground ring k or in any arbitrary k-algeb;# k' . Namely if we take any
linear combination ? g.f. (with finitely many-coefficients gj € PI

j&d '

different from zero) then any solution x of the set § is also a solution
f Lg.f, =0,
o _ gJ,j ) ,

So we can enlarge S in order to include all the finite linear

Z g.f. . But this set of all such possible linear combi-
jEJjJ
nations is the ideal J = KS = PI'S generated by S . Thus we have for

every k-algebra k' :

a)I.g- for every k' € ObG,‘, there axists a set ec-zuivalence: hRk"): Vs(k') - VS,(k’) .

@ rnis an ‘ ' -
E 3 ows.:hat even in the case that I 1is infinite and k 15 a commutative field, it is
Dot convenient to restrict ourselves to the case of § finite, since the most nacural

aasuznptign for S 1is that S is an ‘ideal of Py.. But an ideal of PI is rarely a finite

set. However in classical algebraic geometry when k is a field and I finite, we can
alvays assume .S finite as a consequence of tha basis theorem of HILBERT for ideals of P_ .

I
EBven in this case tha restriction of I being finite looks a priorl artificial and tech-
nically discurbing. :
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7.1y  [{x € k'I\fj(x> =0, vjedt={xexT|ee =0, v¢ €3} .

In fact V,C V, because S C g . Conversely V

2 S

the previous remarky

S c V? (a consequence of

Thus, we see that the two functors VS and VZ (: Gk 2 Sets) are

equivalent:
(7.2) V? ~ VS

Since many different sets of equations S can define the same set of
solutions for every k' € Ob(Ek , choosing the ideal J of the ring PI
in order to define the solution set Vg(k') is the most natural-éhoice
that comes to mind! As we shall shortly see, this choice is a cgnonical
choice. F;f. footnote (2) in page %EJ | |

Let us elaborate on the correspondence between closed algebraic sub-

spaces of the standard affine space IEI and ideals rof PI 1} “To every

(1) -
ideal g CZPI we associate the subfunctor VgC*]EI . We claim the ideal

9 can be reconstructed from the knowledge of Vg . In fact one gets a

(1-1) ~cosrespondence

7.3 c -
(7.3) yvg

between ideals Z € P_. and subfuncters of iEI of the type previously

I
described. = How can we recover ¢ from V, ?
7

An element f € P belongs to ¢ iff for every k' EAOka‘ and

for every k'-valued point x of V, (i.e. x € V§<k’)’ cf. §81) we have

7

L I

A k'-valued point u € Homk_alg(A,'k') is mapped to a point of the subset V?(k')‘-0E

(u = (u(ai))iél) . V?(k') 1s the set of all the points of El(k') satisfying the system
of equations f(x) =0, Vi € 7.

I-7-2
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(7.4) ‘ f(x)

In fact, it is clear that if f € J the equation (7.4) is satisfied.
The converse property is true: any f € PI such that (7.4) holds for any
k'-valued point of Vg(k') fEBr aﬁy choice of k' € ObGiLJ belongs to Z .
In fact we can take k' =.PI/2 . 'Then f(x) =0 for x & PI/g iff £ € g

since ¢ 1is the kernel of this canonical homomorphism PI -+ A= PI/g .

Moreover the map ZJr Vg is order reversing!.

Let g < g C:PI be an inclusion between ideals of P Then we

T

‘have an inclusion in the opposite direction V?' C:Vg .

_Conversely, the inclusion Vg, CIVy implies ¢ < J' because of the

previous characterization of J . In other words:

The map 7 - Vg is bijective because it is order preserving in both

directions.

Thus, we get a perfect dictionary between the language of ideals in

P_ and theﬁianguage of subfunctors V ¢+IEI (# "closed algebraic subspaces

I 7

of P_). Therefore we can say, if we insist in studying affine algebraic
spaces embedded in'iEI , this study is equivalent to the study of ideals in
P. . That is why "old-timers" said that affine algebraic geometry is just

I

"the same' as ideal theory in P rz criticism of this non-intrinsic point

of view, will be given in §8. j

HISTORICAL REMARKS. We pointed out already (cf. Summary of the course, page 6) that in
classical algebraic geometry PI = k(TI’Tz""’Tu] (n=#I<®) . If k 1is algebraically

closed (for instance k = €) the wost interesting ideals are the radical ideals ¢ (cf.
footnote (5), page 5). (¢ 7 =,3). In fact, because of HILBERT § Nullstellensatz,
A= k(‘r 2,...,T 1/ 7 1s the ring of polynomial functions f: M2k of soms algebraic

(I)A k'-valued point u € Hcmk alg (A,k") 1is mapped to a point of the subset Vg{‘.".') I

(u = (u(a ))iﬂ) . V;(k ) 1is the set of all the points of ]E (k') satisfying the system
of equations f(x) = 0, VEC J .
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variety M (non necessarily irreducible(l)) 1£8 2 = J? . On the contrary if J? is strictly
larger than J A has nilpotent elements £ # 0 (@ Z integer m > 1 such that % =0) .

It is clear that £ cannot represent any function on the algebraic variety M represented by

7 .(2) In spite of this "forbidding” situation CROBNER made an atccmpc(3) to establish a bijection

9 « ¥ between arbitrary ideals and affine algebraic varieties of " disregarding the fact
that 7 and J} define the same variety (as locus of k-valued points) (the only gecmetric
points zllowed in those times). He was criticized for being 'taurological” (cf. for instance

SAHUEL(A)). Really the tautology disappears completely ouly with the introduction of the
structure sheaf Gx of the spectrum X = Spec A (cf. © Ch. I1I). Then A becomes the ring

of global sections of &

(and SX can be defined always, whether or not there are mon trivial
nilpotent elements).

X

8. THE CATEGORY OF AFFINE ALGEBRAIC SPACES OVER k . THE "ARSOLUTE' CASE
k=2Z.

GROTHENDIECK’s SUMMARY:

Talking about old-timers,rzf. Summary of §§j.......ftom the intrinsic point of view we are
working through now, we are not really interested in the embedding of algebraic spaces inZo
particular standard affine spaces. Thus the ideal 7 1is not so incteresting in itself. what

is interesting is the quotient algebra A = PI/g(D) since this quotient will represent the

functor in which we are interested. Precisely, we shall see the functors Gk 4 Sets 1isoworphic

to functors Vs characterized as representable functors<6) EA , i.e. those for which there

exists a k-algebra A , the representing object§7) such that (8.2) holds.

In terms of the ideals of PI , we define A as PI/Q i.e, we have the equivalence of

S A with g = PoS, A = Pl/y . ZA "has the advantage of being
independent of any particular embedding im any standard affine space., Conversely any k-algebra
A defines a ZA which is equivalent to some Vs ; since every A 1is a quotient PI/Q for
guitable choice of I and J . The functor ZA (A € Oka) ig called the affine algebraic

functors Gk d Secg: V. ~ V? ~

space over k represented by A .

The affine algebraic spaces over k form a category anti-equivalent(s) to the category
Gk of k-algebras. :

. Por k = Z we obtain the category of “absolute' affine algebraic spaces anti-equivalent
to the category (G =G_ of commutative rings with unit.

z

My 14 trreducible {£f § (=3 ) 1is prime.

(Z)Any b C:k(Tl,-..,In] Tepresents a variety H} but different ideals might repressent the

sema M . However there is 3 biggest one representing H? , precisely JE . 8127, page 81).

Yy e :

(3'GROBNER, Moderne algebraische Geomerrie (Die idealtheoretischen Grundlagan), Springer
Verlag, Wien und Inasbruck, 1949. )

(Q)SAHDEL, Méthodes d'alebbre abstraite en Gaométrie algabrigue, Ergebnisse der Math, Band &
224 edition, 1967: 'Quand 3 W. GROBNER..., tandis que ses "Algebraische Manumigfaltigkeican”
ant l'air d'etre 3 peu pres des idéaux de oolvnomes. page 128.

(5>{E:mzmbcr the geometric meaning of PI/? in the classical case recalled at the end of §4.

(6;;2‘ §1. We have already found the representable functors in the particui;r case k= PI .
P, represents the standard affine space EI .

b ¢ .
A 13 determipned up to isomorphism (cf. Ch. II, §1).

N

8
( )I.c. equivalent to the opposite category G ‘of G .
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To say that the functor Vg (¢ 1ideal of PI) is represented by
A= Pl/g is equivalent to express the following universal property of the

P, .
canonical homomorphlsm PI > A S

Let x: PI -+ k' be a k'-valued point of PI (k' € Oka) (cf. §2).

Then £(x) =0 , for every £ € J if and only if x factors uniquely

through p , i.e. if there is a commutative diagram

I
P
(8.1) l%
A
i.e. x = X, °p sith X, uniquely determined by x .
The map xr <, defines a bijection of the set Vg(k'), of k'-valued

points of IEI v: .shing at § and the set Homz1 (A,k"'Y 4 q.e.d. in
k

other words:

The functor ¢ Gk -+ Sets 1is representable by the k-algebra A = PI
‘4

The covaria representable functor EA: Gk -+ Sets defined by

/9 .

(8.2) Lo zA(k') = HormGk (A,k") k' € 0bG,

is cailed thelaf‘ s algebraic space over k represented by the k~algebra A,
The previéus snstruction eliminates ZEI: apparently there is a

restriction on 4 ince A 1is génerated by the images 'ai = p(Ti) (Vi € 1) .

Actually there is .t such a restri;tion. We can always choose a system of

generators for A {as a k-algebra) tfor instance we can take the whole

underlying set af A). Then we can reverse the procedure. Following

GROTHENDIECK's own words: We shall see that to give such an embedding

EA IEI as a morphism from EA ‘to ﬁEI we must consider as a morphism in

“A

the opposite direction between the representing algebras: P_ -+ A . However

I

~

this is equivalent to giving the images a; of the generators T. (Vi €
i

I) of PI
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which means that the homomorphism PI -+ A uniquely determined by T, »a, ,

(1 € I) 1is an epimorphism, which in turn is equivalent to the fact that A 1is the

quotient of PI by some ideal ¢ .

We solve completely the problem of characterizing the functors
VS: Gk ~+ Sets 1independently of any affine embedding:

A functor VS: Gk -+ Sets represents the solutions of some system S

of polynomial equations with coefficients in k if and only if VS is

representable, i.e., iff VS is equivalent to EA for some A £ Ob Gy -

*
Conversely: for every k-~algebra A( ) (S Oka the representable

is equivalent to %

functor % is equivalent to some V_, . B

A S
(A,B € ObCH() iff A and B are isomorphic.

z
A

The rapresentable functors EA(A & Oka) are the objects of a categor

Affk equivalent to the opposite category G°.

IThe morphisms in Aff are defined in a standard categorical way, (cf. §1)

k
as functor morphisms i.e. natural transformations, i.e. they are the

* £
induced maps f  obtained from morphisms B 2 A in Gk :l
H 1
Homk_alg(A,k ) = Hpmk—alg(B’k )
s f u i - 1 ¥ E CL (* 7&)
by composition with f£: B 2 A +k': u=ausf, Tu¢€ zA(k Yy (Vk 0bQ) .

In GROTHENDIECK's own words:
(*)

In classical algebraic geometry k was a field and A was finitely generated of k ., If
k[;l,...,gu] is an integral domain we get back the "allgemeine Punkt” of an irreducible

algebraic variety (over k) embedded in S 73 k(gl,...,gn] is a reduced algebra over

the field k still we can give a classical intarpretation (cf. Summary of the course).
In the general case there is no classical interpretation at all...

The reason why I was not supposed tgo be finite appears clear now. We want the full
category of k-algebras, not just the finitelv cenerated ones. Finite dimensional affime
spaces appear just when I is finite.

(%) ;
cf. Ch: 11, 81 for Ffurther categorical elaborariomns. Tt is claar that we did not use any
speclfic property of the category Gk . :

I-8-3
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If %, ¥' are affine algebraic spaces over k represented by k-algebras
A, A" the morphisms % - X' in the category Affk correspond bijectively ;

(in the opposite direction) to the homomorphisms of k-algebras:
H =~ 1
HomAffk(E,E )y = Homk_alg(A LA)

This is just the usual sorites of representable functors.): Arrows

between the functors correspond to arrows between the objects. (Cf. last !

footnote) .

REMARK. These facts look too formal, or tautological. The really
interesting facts come from the association (in a functorial manner) to
every A (e every EA) of a certain geometric object: the affine scheme

defined by A: (a certain locally ringed space (Spec A)K) , {cf. Ch. III),

For the time being we have the equivalence of categories: g
Affk 3 @; . For k = Z we obtain the category Aff = AffZZ of "absolute"
affine algebraic spaces, anti-equivalent to the category G = GZZ of commu-

tative rings with unit. We feel this is a geometric theory due to the

geometric meaning of all the constructions involved:

If E'%ﬂ I is a morphism in Affk every k'-valued point in %' goes
to a k’—ﬁalﬁed point of % (cf. §2) (just by pull-back of homomorphisms).
In particular this is true for k' =%k . X'Cﬁ ¥ is injective iff the
corresponding f*: A+ A' is surjective, thus we come back to the initial
remarks that f* represents a restriction from % to X' . In particular
we can choose a X9 ]EI as before. In the classical case one is parti-

cularly interested in the case that k' 1is a reduced algebra (Nil k' = 0)

or it is an integral domain, or in particular a field. Besides %x(k') is

I-8-4
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a closed algebraic subset of some IEI( if we want to use affine embeddings

again, although we tried often to avoid them). 1In the next sectiomns we

¥ , in particular when

‘shall study these particular kind of "points' of 5

the ring A representing X belongs to one of these speéial types. Then
if k' is a field the "geometric points' (cf. mext §9) will give us back

the intuition of the classical case.
PART II

RESTRICTION TO PARTICULAR TYPES OF k-ALGEBRAS
(k' = k fixed, k' =T, k' a field, k' reduced,...)

9. ‘SWYf We come back to the system § of polynomtal equations fj('ri) =0

(1 €1, { € , with coefficients in 2 ground ring k (ef. §1), but instead of':aking arbi=
trary test algebras k' € Oka, we shall restrict k' to certain subcategories of G’k R

which have a particular interest for some reason, geometric, historical, important for the
foundations of algebraic geometry. Actually these cases help to understand GROTHENDIECK's
simplitications. The main cases are: ‘ : ‘ ; .

1) k' =k fixed, {.e we fix a subcategory Fix k with only one object {.a we allow only
. k=valued poincs, It is the arithmetic point of view again, cf. %s -

2) k' € Ob'ék (Z:,‘ full subcategory of G.k whose objects ara fields

3) The k-algebras k' ars raduced ({.e. %’ coutains no nilpotant elements # 0). We can
still reduce, as before the case of am arbitrary § to the case of an ideal F of PI

buc the ralation between the 7 and V, is not quite so simple as in the general case.
'S .

In the case 1) 1f k 1is the fleld of complex mmbers V,_, becomes the complex

S &)

algebrale variety V.(T) < . In the case of finfte I, this was one of the main subjects

of study of the piloneers of the F(IXth century: RIEMANN, Max NOETHER and. then the Italians,
ete. The study of irreducible (affine or projactive) algebraic varieties was considered as
THE object of classical algebraic variety. Let us follow GROTHENDIECK's own words:[

«+.Now let us see what happens if inétead of taking arbitrary algebras
k' and k we took only certain types of aigebraS, for instance in the
first naive point of view we restricted ourselves to the case k' =k
(k' fixed) (cf. case 1) 4 for instance iﬁitially we can assume k' =k =R
(the field of real numbers) and then the next step would be the algebraic

geometric over the field T of complex numbers (and we shall not move it

l - .
( )Iha affine Vg (¢) were considered for local problems. For global problems, classical

algebraic varieties werms always the projective ones.
1-8-5 I-9-1
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this is the classical case, cf. 810 , or also we can take

any more)( ),

only algebras k' over k which are just fields or we can consider only

reduced algebras k'(z)

10, FIELD VALUED POINTS:
SUMMARY: We shall restrict the functor V. to the full
subcategory Sk of Gk consisting of fields which are k-algebras. Precisely for every ideal

g of PIV we define Vﬁ: Ek -+ Sets as the restriction

v?' = vglsk

Then the bifective map J -~ V? is lost; what we get is the following:

Two fdeals 4,7" of P, ' define the same functor 1ff § and J' have the same radical:

BT o BT

4s a consequenca there is a bijective map between the functors V' and the radfcal {deals:

F=J3- v';,(- v];)

The proof requires the lemma fip = Nil A equating two definitions of the nilradical
of A pESpecaA

The proof of the bijection between the sets of radical {deals of P and functors Vé
can be extended to other cases, for instance when the k' are reduced (or, in particular

when the k' are integral domains ,). Anyhow the scatenent for fields is part1cular1y
significant because of the importance of the geometric points, cf. next §ll1. .

css50, if we look at points of the affine space k'l with k' a
field k'€ ob 3, Gi full subcategory of Gk) , we restrict the

functgr ng Gk -+ Sets to the functor
t o v
(10.1) v vglsk. F, - Sets

going from the category Sk of fields k which are k-algebras to the

category of sets. So we shall look at points of an affine space E (k')

L rEE. the classical case reca.led 1n the Sucmary

2
¢ )I.e. without nilpotent elements # 0 , cf. footnote (1), page 9

I-9-2 I-10-1

<RI A,
22— o - ——— — - P

R Y

R 1




-39-

with coordinates in a field k' rz;Oblﬁd; if £ € PI and we assume

(f(x))m = 0 for some positive integer M (x € k‘I) we have f(x) =0 .

This implies that if a power of a polynmomial vanishes at all the points of

Vi (k' € ObS%) then £ itself vanishes identically on Vé.(k') .

? —
s

This means that if we replace the ideal by its radical N Wg=o D

then we have

(10.2) gl ~ v'—(z)
) 3 W

Taking the ideal J@ associated to ¢ Jjust means that if I look
at the quotient ring PI/? , then JE is the inverse image of the nil-

radical of PT/Q . So what we did in terms of these quotient :ings is to

divide out PI/g by its nilradical Nil(PI/g) , in such a way that the

quotient (PI/Q)/Nil(PI/g) is reduced:
(10.3) LG (BN

Now let us see what that means! We can check easily that Vé CZVé. iff
VGF-CZJg . Then if we take this for granted we obtain a bijective, order
reversing correspondence between the set of radical ideals of PI and  the
subfunctors: Vé: 3k + Sets coming from bunches of polynomial equatioms.
In order to éet this relation we have to see how to recover Ja- in terms
of V! . Now let us express this fact in terms of commutative algebra.

7

Let us look therefore at the quotient ring A = PT/Q . Let us recall that

ey
(2)

Cf. footnote (2) page 9.

In other words, we are allowed now aftar restricting Gk to g, oot only to comstruct
the ideal 9 of all the k-linear combinations of polynomlals of § . We can go further
here, we can also consider the polynomial £ such that a suitable power £ @€ E+) is
an equation also.

I1-10-2
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the points u of V! with values in k' are just the homomorphisms:
{10.4), u: A & k' (v k' € 0b Sk)

Then the property I stated can be rephrased as follows:

An element £ of PI has zero image by any homomorphism (10.4).

Therefore what we are looking for just means that the intersection of all

the kernels of homomorphisms u of type (10.4) is just J? . Now this
(L

statement is equivalent to a well-known lemma of commutative algebra.

The kernels of homomorphisms of type (10.4) are precisely the prime ideals

of A(z)° In other words: the mentioned lemma expresses that:

The intersection of all the prime ideals of A is equal to the

ideal of nilpotent elements of A (= the Nilradical of A):

N p = NilA
pESpecA

It is clear that if f is nilpotent, £ € p , ¥p € SpecA . The opposite
implication is less clear. It requires the axiom of choice or ZORN's Lémma.
It can be seen as follows: if £ € A is not nilpotent thé localization
with réspecﬁ to the multiplicative set § = {fnln = 0} (ecf. Ch. III, § 8)
is a non zero ring SelA , thus there exists a maximal ideal m € S—lA

. -1 ;
(RRULL's Th.) and the inverse image p =p m € Spec A by the canonical

homoﬁorphism p: A= S-lA is a prime ideal such that f §p .

(1)1f f 1is an element of the ring A € 0bQ such that u(f) = 0 for every hcmcmﬁtphism
ut A4k (k€ KR) then £ 1is nilpotent. This is a well-known result of Commutative.

algebra that, like many others of this type, can be deduced formally from KRULL's thecremi-
If A% 0 then A contains at least one maximal ideal.
(2)}\11 ideal p of A (€ 0bG) is prime iff A/p is an integral dowmwin cf. footnota (4) in
Y ‘A is never prime because A/A = O is mot an integral domain. The
is an integral domain.

page 9. In particular A
zero ideal of A 1is prime i{ff A

I-10-3
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11. THE CLASSICAL CASE: k FIXED ALGEBRAICALLY CLOSED.

SUMMARY: ...for instance, let us assume k'(€ ObSk) to be fixed, equal to k . Then ve

obtain some nice results in the case that k 1s algebraically closed and the set
I= ITI,TZ,...,Tn} of indeterminates. of our bunch of equations is finite.

Let us call V; the subset of k' where all the polynomials of the ideal

g of PI vanish ( k-valued solutions of S!). Then it is still true that

v!" depends only on 43

7

(11.1) V; = Vj; g Cik[Tl,Tz,...,Tn] (k alg. closed, n < =) .

Therefore it is true that if 2,7' are two ideals of k[T ,...,T ]

3]

which have the same radical the correspénding V;, V?' are equal:

n

11.2) 5 = 7 =y = v < x

This is true because J? can be reconstructed from the knowledge of

the algebraic closed subset v of k™ . This is (essentially) the sc-called

7

HILBERT's Nullstellensatz. In other words, we can reconstruct (in terms of

V;) , not the ideal g but its radical ideal J? , by showing that JE is
(A

the ideal of all the polynomials of k[Tl,Tz,...,Tn] vanishing on the set g

Vy Classically V! was called the affine algebraic variety defined by

7 7

the ideal ¢ of k[Tl’TZ""’Tn] in the affine space S

‘We have, in other words, the following classical situation . : Any

ideal g of k[Tl,...,Tn] defines an affine algebraic variety V;(k) = Vﬁ

(k fixed). The ideal of polynomials vanishing at every point of Vg is

precisely the radical /9 of § .

This is the classical version of HILBERT's Nullstellensatz. So we

shall see what that means 1in an intrinsic language :

I-11-1
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. n
Let Z an ideal of PI = k[Tl,TZ,...,Tn] - The points of &k can
u
again be identified with k-algebra homomorphisms _PI *k  (cf. §2) and
those satisfying the bunch of equations {f(x) = 0, Y£E€ g} ,{have the
property ker u O ¢ )factors through the quotient A = Pl/y making commu-

“tative the diagram:

?, e
57
l"
"

o]

A ‘ R
The statement is that if a polynomial £ € PI belongs to the intérscction
of all the kernels )ker u, of algebra homomorphisms u: PI -+ k vanishing
at V, (ker u D J) then a certain power £ (m =2 1) belongs to F 5 i.e.

7

the image of f in A is nilpotent. Since A is a finitely generated

k-algebra (k alg. closad) the Nﬁllstellensatz says that:

' ; *
Nil A= {f €A, =0 Ffor some m€Z }=  keru

ué:Homk_alg (PI 3k)

This statement can be decomposed into two (both regarding a finit_:el_y
generated k-algebra A , with &k algebraically closed field):

A 2) I£°A isa fleld, A=k
ldlxtellen.sﬁtz o .
D) EIse ng D

mEMax A

a) 1s not tautological because our assumptions do mot imply that A

is finitely generated as a k-module. This ingredient of the Nullstellensatz

shows us that the hypothesis that k 1is algebraically closed is Aes'sential

in ord-~r that a) remains true. Otherwise a) would be false for any non
trivial finite field axtension of k.

The property b) expresses the fact that Nil A which 1s known to be

(¢3)

Max A = {(mlm  mexinmdl {deal of A} 13 called the maximal Spectrum of 4 .,
-I=11<3
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the intersection of all prime ideals of A is also r;;cause of our strong
assumptions on é_J the intersection of something that can be imagined to
be larger.' b) is a very special property of algebras finitely generated
over fields; it tends to be ''extremely false' in general, for instance for
local rings where there is just one maximal ideal.

The implication = 1is clear. a) comes from the fact that if A is

a field and wu: A » k is a k-alg. homomorphism A decomposes in k + keru,

but keru =0 thus A=~ k . b) is a consequence of the fact that the

maximal ideals m of A are characterized by the condition that A/m 1is
a field. But A/m 1is a finitely generated k-algebra and since k 1is
algebraically closed A/m = k . Therefore the maximal spectrum Max A 1is

mapped bijectively in the set Homk-alg(A’k) .

Max A Homk_alg(A,k)

Conversely if a) and b) are true the intersection of all the maximal
ideals of A 1is the same as the intersection of kernels of k-alg homomor-
phisms of A into k and therefore the Nullstellensatz is verified.

REMARK. We noticed already that a) cannot be generalized to fields

which are mot alggbraically clo;ed, whereas b) is true for every field k
i.e. ﬁhé intersection of the maximal ideals of A (finitely generated
over k , k not necessarily algebraically closed field) is equal to the
nilradical of A . This is not difficult to deduce from the case of k
algebraically closed. a) can be replaced by a')

a') If A (finitely generated k-algebra) is a field then A 1is a

finite algebraic field extension of k , i.e. A is also finitely generated

1-11-4
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as a k-module. a') can be restated also as follows:
If f belongs to the intersection of all the kernels of k-alg homo-

morphisms from A to a finitely generated field extension then £ 1is

nilpotent.,
For proofs of the Nullstellensatz m we refer to ZARISKI-SAMUEL or

BOURBAKI's Commutative Algebra.
12. EQUIVALENCE CLASSES OF POINTS OF X . GEOMETRIC POINTS.
To begin with let us consider a k algebra A , and let %X be the

affine algebraic space fcpresented by A, i.e. the representable functor

£ = VA assigns to every k-algebra k' the affine algebraic set Homk_alg(A,k').
We are going to introduce an equivalence relation between k'-valued points

P: A » k', for variable k' .

A k'-valued point, i.e, a k-alg. homomorphism

P: A=+ k!

is not necessarily surjective. It defines a surjective map PS: A PQ) ,
where P(A) is a sub k-algebra of k' , which might be strictly smaller.

If P_. is surjective, then P} = Alker P and it is possible to identify

S S

PS with the canomical map a v a + ker PS which is defined just by the

kernel, The equivalence relation that we have in mind is defined by

S 2

P~P' o ker P =ker P' , or what is the same P ~ P' iff the corres-

pondent surjective points PS ~ Pé are equivalent. In other words the

set of these eaquivalence classes of points of A corresponds bijectively

to the set of all ideals of A ;"or what is the same with all homomor-

I-11-5 I-12-1




-45-

phic imaggs‘ A/a and their canonical surjective homomorphisms P: A = A/g .

We are particularly interested in the so-called geometric points, i.e.

those with values in'k-algebra k' which is a field. Then P 1is geometric

iff P(A) € P 4is an integral domain & ker PS = ker P 1is a prime ideal
p . Conversely: for every prime ideal p € A , the canonical projection
A - A/p defines an equivalence class of geometric points. Among the

geometric points defined by p there is a "minimal” one (cf. the field of

fractions K(p) of the integral domain A/p). A/p is itself a field 1ff

p 1is a maximal ideal of A .

13. CRITICISMS ON NILPOTENT ELEMENTS:

GROTHENDIECK's SPEECH:

...50, we see that in certain problems, instead of taking all the k-algebras k' as-
"rest~algebras” (in which we take coordinates of poimts of algebraic spaces) we took certalnm
types, either fields, or integral domains or reduced rings, or fields which are finite exten-
sions of k or if k 1is algebraically closed we took k! = fixed = k¥ . The price for doing -
so iz that we will no lomger be able to distinguish (in geometric terms) between z2n ideal J

of PI and its radical ./ . 1In other words |if we reject again affine embeddingij and we

think in terms of functors, intrinsically viewed, we look at functors ZA (with A = PI/?)

represented by A ., Then, because of our restrictions om the k' we cannot discinguish A
from its quotient A/Nil A (Mil(A/Nil A) = 0). So, the fact of working cnly with fields

or with some types of fields k' iwmplies techmically that we work only .with reduced rings A
fgs representing objects in the ZA_J. This has been done for a very long time, until ten or

fifteen vears ago! Of course, people working in Commurative algebra look at rings which were
not reduced |for instance Z/ n, PI/ «e-_| but, in Gecmetry in a way one refused to

. P 1
consider geometric interpretations of rings unless they were reduced! A very unpleasant
situation! KAHLER was the first ome to systematically build up a context in which to associate
gecmetric objects to rings which may have nilpotent elements. DIEUDONNE and I continued in
the same directiou. So it is now quite evident from great mumber of developments that have
been done in the last fifteen years that, in fact, in Algebraic Geometry, working ouly with

rfduccd rings does not give us all the results that ome would expect. In many questions the
nlloo?ent element .-are the crux of the matter. In meny problems, for instance in infinitesimal
questions the nilpotent elements play a considerable role.

Therefore I think we should retain as a general principle that we shall not restrict our
algebras k' . over k 1in any way whatever, certainly not assuming that they are reduced
algebras, i.e. the k-algebra A will never be confused with A/NilA, in order to eliminate
nilpo;ent elements, since the nilpotent elements carry very valuable information concerning
the ring A .,

M- '
Ci. footnote (1) in page 4l. According to an old-fashioned definition (p prime o a £ P,

b&€p = ab £yp) ? was considered as prime. It is important to keep in mind that we
follow GROTHENDIECK's theory, because of the importance of the set .

Spec A f,{plp prime ideal of A} (the spectrum of A)

(cf. CH. I;I). :hua SPec A=g o A=0 (KRUL's theorem),

I-12-2 I-13-1
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II would like to comment why classical algebraic geometers did not consider

!
nilpotent elements. If k is algebraically closed (k =, classically)

the affine algebraic space (@ affine variety considered at that time was

identified with the maximal spectrum Max A. Then, for every £ €A we

can associate the function f£: £: m= £(m) = image of £ in the residue

field of Au$§ k) and this function can be considered as a "polynomial
function':
The map £ = T is a ring isomorphism, because T is identically zero

iff f E€m for every m € Max A = £ is nilpotent = £ =0 (because A

is reduced (cf. §11, page 42).

Classically A was regarded as the ring of polynomial functions ’zA(k),
(which are continucus in the ZARISKI topology cf. next §14).

If A is not reduced this functional interpretation fails:

If we insist in calling a nilpotent £ € A (f # 0) a "function" we

-

have the paradoxical situation that £ is not zero but £ is identically

zero. Without the invention of sheaves it would be hard to overcome this
objection. :

. SERRE ;;fovéd in FAC that A is the ring of global sections of the
structure.sheaf SX (X = Max A, A reduced)? whose sfalk at any ﬁ € Max &
is the local -ring Am . When we remove the restriction on Nil A it is
still ?ossible to con;truct an SX and it is sgill true that A = IKX;®X>
but it is wrong to call the elements of @X germs of functions. Imn Ch. IIi
GROTHENDIECK will tell us how for an& commutative ring with unit A (€ 0bG,

cf. §2) by replacing Max A by the full spectrum Spec A it is possible- l

I-13-2




L —aniad

4
!
|

SV

-47-

to carry on all the constructions: the ZARISKI topology and the sheaf @X .

It is not possible to get good results with the maximal spectrum...,,

. CF

14. THE ZARISKI TOPOLOGY.

SUMMARY: The family U(kn) of algebraic varieties in x® (k algebraically ciosed
field) contains the empty set ¢ and k" and it s stable by finite unions and arbitrary
intersections. Thus U(kn) is the fawily of closed sets ia a topology in k" known as the

_ ZARISKI topology.

Let us assume that the system of equations S consists of only one
constant polynomial ¢ . For ¢ = 0 every point of k" is a solution. For
2 . n o, . n n> ,

0 mno point of k is a solution. Thus ¢ , k € U(k (cf. Summary).

. . s : o
Let be an indexed set of algebraic varieties in k

{Vv}vEN
represented by systems of polynomial equations Sv . ven . iLet
s = U Sv be the union of all these equations. Then S represents the

vEN . ,
set-theoretic intersection of the VQ

(14.1) V.= 0 V
: S ven Vv

The previous remarks hold actually for an arbitrary commutative ring
with unit k . Now if k 1s an integral domain and Sl’SZ are two systems

of polynomial equations we can see immediately that the system of equations
(14.2) . S = {flfz\f1 €5, f, € sz}
represents the set-theoretic union:

(14.3) v.=v. UV
5 85

In fact VS U VS

CZVS is clear (for any k). On the other hand if
1 2 !
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(14.4) x &€ VS (flfz) (x) = (fl (x))f2 (x) =0 = either fl(x) =0 or f2 (x) =0

(k is an integral domain).

?rbperty (14.3) 1is extended to arbitrary finite uﬁions by induction.

All these trivial properties were Qell-knoWn in classical timesgl) but
for many Years this ZARISKI topology was not taken seriously because of
the following highly undesirable properties:

1) It is very coarse.

2) The closed sets are very "thin'

2').Equivalently the open sets are ''very large'.

3) The closure of any non empty open set is the whole space.

4) Any two non empty open éets U,V intersect: UNV # ¢ .

4) implies that‘the ZARISKI topology’is non-Haussdorff for any n> 0 .

It is T however, i.e. every one-point set is closed (it is the intersection

1
of 1 linearly independent hyperplanesf).l

The ZAﬁiSKI topology is coarser than the usual topology of. " ; the
pioneers used topological considerations based on this natural topology,
for instancé}in conjunction with transcendental methods related to the
theory of anmalytic functions.

SERRE;S FAC paper (1955) used ZARISKI topology instead of the natural
topology of analytic manifolds, showing that many methods used before for

analytic coherent sheaves can be extended to the purely algebraiz case.

(l)cf. for instance HODGE-PEDOE treatise: Methods of algebraic geometry, Cambridge Un. Press,
1947, Vol. II. The properties menticned in the text are checked but no mention is made of

the fact that this characterizes closed sets in a topology. Incidentally the same properties l

are true in projective space, with the only necessary modification that the polynomials of
8 need to be homogeneous.
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We shall see in Ch. III how the ZARISKI topology in this original naive

sense still preserves a meaning in much more general situation, where points

become prime ideals of some commutative ring with unit A .

In fact (14.3)

becomes, in a natural sense

(14.3)! "(flfz) (p) = 0" = either "fl(p) =0"} or "fz(;:)”

where £(p) =0 41is used as a conventional notation for £ €p or £

CHAPTER II1

LIMITS IN THE CATEGORY AFFR

oF

AFFINE ALGEBRAIC SPACES

fCh. II can be omitted in the first reading. GROTHENDIECK needed this

material for his course on algebraic groups. The constructi?n of tqe affine
scheme (Spec A,K) attached to any commutative Ting with unit ~A ~does not
requiré any material in Ch. II. We advise the beginner to read Qh. IIT .

first.|

. . —
-++30 we have set up the basic language concerning affine algebraic spaces }cf. Ch. I, §8]

and we could proceed now in two directions: either restating the notion in a different way
that will allov us to glue together affine pieces and define more general algebraic spaces which

1)

don't .nezed to be affine, i.e. which don't need to be representable by k-algebras, or we could
alternatively first work a little bit more in this category [Kffk of restricted objeects

definiﬁg such operations as products, fiber products, kernels, [€f. 81, EJ . Since we are going

to

tive before globalizing these notions_(ggfined in Vol. IEJ

' (2)

introduce affine group cbjects, i.e. group objects in Affk we choose this second alterna-

EiﬁQMRY. Chapter II is mainly devoted to the study of limits (cf. §2) in the category

Affk of affine algebraic spaces over k (k € 0bG) ,-in particular, for k = Z, in the

“absolute case': Aff = Aff:2 .

An object of Affk was already defined in Ch. I as the functor nf solutions, when we get

&9}

(2)

...which leads us to define the spectrum X = Spec A and the structure sheaf Gx and then
we glue together several affine pieces [Val. EH o
This will be handy for defining group objects in the category Affk r;;eded in his course

on affine algebraic groups taught simultaneously in $UNY at Buffalo, Summer 1973, cf. AAG-:
Buffalo course.! ’
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rid df‘the affine embeddings by replacing S by 7 and then by A (é OﬁG,_), where A = PI/; s
and we were led to identify such 2 functor with the representable funmctor X = ZA = VA: k' n IA(k')
(vk' € Obﬁk) where A& 1is '"the k-alaebra representing X',

The audience requested a purely categorical revies of the fundamental concepts of inverse
and direct limits, as well as the reduction to some simple particular cases (rreated first in
§1,2,3). Since the graduate teaching in commutative algebra and topology {both point-set and
algebraic) becouecs inereasingly categorical there are many chances that a knowledgeable reader
might skip the first purely categorical part which rakes much more space than the actual
applications to the two dual categories Affk and Gk . However it would be rewarding to get

acquainted with these notions through GROTHENDIECK's very concrete introduction (based ou
TOMOXU) . I found it wmuch easier to read MACLANE's graduate text on categories after reading
these notes. ’

PART I
CATEGORICAL PREPARATION

REFERENCES. )
For further details cf. EGA, Springer, Ch. 0, §1, page 19, ; cf. also TOHOKU, 1.7d), SGA, 3, I.
Quicker introductions without proofs can be found in DIEUDONNE, Advances, II. A more technical
exposition of this material is given in MACLANE's category text.

1. PRODUCTS, K_ERNELS, FIBER PRODUCTS. rw—e shall review these categorical notions,

first in a pure set theoretic way, then in various simple topological or algebraic geometric

(but classical) contexts. Finally GROTHENDIECK will tell us how these notions in their original
set-theoretic- form can be characterized and redefined just in terms of arrous (maps, morphisms),
in a way that the same definitions will make sense in an arbitrary category C . These product
constructions will appear as particular cases of {nverse limits (cf. §2) and they will help us

to understand the general definitions, that can be stated in terms of the notion of representable

. . 1 s s .
funetor {(ecf. Ch. I, §1) by a reduction to the set-theoretic case.( ) It is important to kKeep in
mind, that this reduction is done via sets of morphisms in C . Precisely, we are going to use

the inclusion:

(1. ' it e o= Hc;m(Co, Sets)
by replacing every object X € 0bC with the representable functer iX) = hx: C - Sets.

Thus if we know what the set-theoretic product AXB or ker(u,v) means for a double
- M u N

A . u
set-theoratic arrow A 3 B , then 2 =XXY or z = ker{(u,v) for X 3y (X,Y,2 € 0bC;
i v v

u,v € Arv C) iff for every T € 0bC we have:

(1.2) B Homc(T,Z) = HomC(T,X) XHomC(T,Y)
or
(1.3) HcmC(T,Z) = ker(u,,v,)
Uy
where ug,v, are the induced wmaps Homc(T,X) 3 Homc(T,Y) . Of course (1.2), (1.3) make sense

V*‘

because the Hom,( , ) are sets.
w

The important construction of fiber products can be reduced to the ordinary product and
to ker( , {_j o

(1)Very often, but not always, an object of C is a set X with some kind of additionmal struc-
ture (for instance a group, ring, topelogical structure), thus there is an underlying set. We
do not use the points of these underlying sets...(which do not appear in the categorical
axioms...): the definitious need to be purely categorical. As a counterexample remember
that any preordered set becomes a category, (where the objects are not sets with an additional

structure),

I1-1-1
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PRODUCTS :

Let us start by recalling the definition of the usual Cartesian product

XXY of two sets X,Y as set of pairs (x,y):
(1.4) XXY = {7 |x €%, y.€v)

There are two maps p,q: XXY 5 X and XXY 3 Y , usually called the

grojecﬁions on the first (second) factor defined by

(1.5) p&x,y) =x q(x,y) =7 T(x,y) € XXY
KERNELS:
u ' ‘
Let wu,v be two maps X 3 Y . The kernmel of the pair (u,v) is
v

defined by

(1.6) ker (u,v) = {x € X‘u(x) = v(y)}

The set of fixed points of a map £: X # X 1is obviously given by

ker (£,1) .

EIMARK., The usual ker, so frequent in homological algebra,is actually a particular case when
the second map v i3 equal to "zero', in the following sense, Let us assume that we replace
the catesgory of sets by the catagory Set0 of pointed sets, i.e. ac object is a set (¥ ¢)

with a distinguished base element O and the morphisms are base presarving set maps X - ¢ |
i.e. mapping O, in OY . The map induced in the underlying sets for abelian groups,
n .

wodules, rings are distinguished in the sense that the zero elemast is distinguished. In
Se:o the zero map X s Y 1is always defined and ker f = kar(f,0) in the sense of the

praviocus defipition.

FIBER PRODUCTS

An important related notion is the fiber product AXXSB of two set

: £ ' '
theoretic maps: If A -+ C, B § C are two maps on the category of sets

the fibre product :EXCg denoted usually'byrtAXCB- for short (although

f,g play an essential role) is the subset of the usual product AXB ’

I1-1-2
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chafactérized by:

(1.7 Ax B = {(2,b) €4xBlE(a) = g(®)]

An important particular case of the fiber product is the intersection A (1 B

of two subsets of C , when £,g Dbecome the canonical injections A< C ,

B= C .

Let A= {(x,7) € CxC|x =y} be the diagomal of CXC . We obviously

have
(1.8) & = ker(p;,?,)
P1
vhere (pl,pz) denote the two projections CXC _'; c
’ P
: 2

The previous diagomal ca;s,e can be igtcrp:ete& as a particular case of
the intersecti;n when A =B =¢C, £f =g = 1Gf

There ;F.s a natural (bijective) diagonal map &: C =2 A (x (x",x).v),
¥x €0 . |

Then 'thé iﬁtersection AN B 1is expressed as follows:

(1.9) | 6ans =axsnal®

The Cartesian product. XXY of two sets can be trivially identified

with xx{e} Y where {e} is-a one-point set. @

(1)1n Classical algebraic Geometry,this comstruction has advaatageswhen A becomes a-linear
subgpace of CxC (for instance if C is an affine space). This reduction ro ctne dimoonal
or dlagonal tTick has been widely used in the intersection theory of classical algebraic

varieties,

(Z)This will have a categorical analog for more general categories, depending on the faét
that {a} 1is a final object in the category of Sets. (Cf. I §l).

II-1-3
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Of course, these pure set theoretical notions become more expressive

when the sets have some additional structure. For instance, if X,Y are

topological spaces, XXY 1is usually understood to be the Cartesian

product of the underlying sets endowed with the product topology. If

X,Y are vector spaces over a field k of finite dimensions m,n , XXY

can be naturally identified with X®Y . In classical algebraic Geometry
if X,Y are irreducible projective algebraic varieties over T so is
XX Y and the irreducible subvarieties of XXY are by definition the

irreducible correspondences between X and Y .

There 1s another interpretation of the fiber product XX_.Y as a

S
base change (widely used by GROTHENDIECK) whichwe need to discuss. Let
E(X a S) be a fiber space of some sort (X is the total space,.s the

base space, p the projection).

X

x = f(x")

£
Let S' 2 S be a conginuous map (base change). We want to construct

the inverse image fel(E) (or pull-back) as follows: For every x' € g'
we assign as fiber over x' the fiber of E over f(x') = x (i.e. "we pull

back the fibers'). In order to formalize and to introduce the topological

-1

structure on E' = £ "(E), we construct first the topological product

XXS' and then we rastrict it to XXS S'; conversely any A‘XCB can be

II-1-3
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interpreted as a pull back of B4 C by the base change A 2 C . Now let

us see how all these constructions might be introduced in an arbitrary

category C...Let us consider two aobjects X and Y of O0bC and let

L'IS see what we can say about the product X XY (that might not exist...)
If XXY exists, it is a new object (& O‘bC) . In order to defime it

axiomatically up to isomorphism, we shall examine first products of sets:

If X,Y are objects of the category Sets, the main categorical property

of XXY 1is the existence of the two projections (l.5) in such a way that,

. u
for any other set Z giving a map Z - XXY 1is essentially the same thing

as giving two maps Z =# X, Z + Y such that the diagram

XY

(.10 | | "Jﬂf
3K

»
o1 4

k4
commutes. --In other words we have a bijection u » (pe Li,q s u)
(1.11) . Hom(Z,X X Y) 3 Hom(Z,X) X Hom(Z,Y)

(cf. (1.2)5 which associates the morphism u with the ordered pair of

’ : 1
morphisms . peu aud qau.( ) We shall write 'u = (pou) X (qeu) = (peu,qou)

The property (1.11) will be taken as definition of the product

XXY for any category C: Precisely:

The object XXY € 0bC together with two arrows p,g: XXY g X, £XY 9} vy

is called a product of the objects X.Y (both € 0b(C) when pP,q are

universal with respect to éll ways of mapping any Z € ObC into XXY 5

€3]
By the way, 1f Z 1is reduced to a point {e} this just means thae
XY ise
the pairs (x,y) (x € X, y € Y), because to define a map [e} +2Z i3 to ckf:s:esas :f all
Z ; and in particular, {e} + XXY amounts to choosing a pair J . point of
' . gee

11-1-4
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i.e, 1ff for every 7 4 XXY the map defined by u = (psu, q°u)
between Hom(Z,XXY) and Hom(Z,X) xHom(Z,¥) 1is bijective.

REMARK. . Since Hom(Z,XXY), Hom(Z,X), Hom(Z,Y) are sets, essentially,

the definition of a product as a solutiom of a universal problem is reduced

to the particular case of the categorv of sets., This solution is defined

up to isomorphism, i.e. if (XxY)' is a second product, one can find an

arrow u: (XXY)' - (X,Y) commuting with the projections; reversing the

role of XXY and (XxY)' we see that this is indeed an isomorphism.

One interasting problem on any category which we may consider,is to
find out whether or not there exists such a categorical preduct XXY for

any pair of objects X,Y of . 0b C. This product might exist or nof but

1)

if it exists it is uniqde up to isomorphism.
Namely, we considered the case of.two objects before; butiwé can also
take a family of objects Xi € 0bC depending on one index 1i(€ I) ~and try

to define the preduct I Xi of the Xi . This should be endowed
i€l - o
with a family of morphisms 1 of the product into each of the X :

=

P
(1.5 " ' ' I Xi 3 X.
ier +*

and this would have the universal property that, for every zle ObC|, the

map - which goes from Hom(Z, I Xi) into the product I Hom(Z,Xi) , which

' ' . i€l T o iexr

associates with a morphism wu: 2 -+ Il Xi’ the system of all composita p,eu
- iex :

should be bijective. In symbols, we have:

(1.1t ' Hom(z, T X,)3 I Hom(Z,X.)-
. R i€1 1 i€I 1 -

(1) . . .
This product formation is a particular case of the construction of the so-called inverse
limits in a category, (Cf. §2 for the general definition).

I1-1-5
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B T Oy SIS, 1

. So this is the case of the product of an arbitrary family! One can

© e

wonder whether or not this product exists in C , but if it does exist, it is

et =

defined up to a unique isomorphism.
By the way, when the family is. empty rf'='gd we can wonder whether

such a "product of an empty famiiy exists" {Z& order that (1.11)' still holdEJ;

conversely: it is easy to ‘show that the product becomes a final object,

écf. ch. I, %L).

Thus, among the objects obtained by.product formations, we also have the
construction of final objects! Of course when I contains just oné'element)
the product over I alway; exists in any C , but this is not so for #II[ >1. -
course, if the product exists. for any pair. of objects, tﬁén we can always
prove the existence of products-éf n objects (for aﬁy finite .n) by
pure associativity considerations.

Now le; us see how we can citend'to'any C 'the ﬁotién of,kefnel of a

double arrow: Lat us assume that we have two arrows X_: Y in a category

: -9
C with theisame source X and the same target Y . We want to define the

kernel K of these two arrows (where K € 0bC) , by a reduction to the set

theoretic case involving arrows only. A kernel would be an object KIE.ObQJ

together with a morphism 1: K -+ X (as an extra structure). Composing

i with the two given arrows, we have two morphisms from K into Y

such that pei = qei and we want this arrow i to be univefsai, for all

arrows with target in X , relative to the property that the composites

with p and q are equal. I will make this more explicit: for aﬁy object

2(e obQ)y, we look at the set Hom(Z,K) of all morphisms from Z into 'K ;

Ir-1-6
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by composing with 1 this is mapped into the set of morphisms from Z to

X: £v iof ; and composing again with p and with q , I get two maps

-

peief, qeisf from Z into Y . Then (XK,i) is a kernel for the pair

p
(p,9): X3 Y , iff for every choice of Z(€ 0bC) the sequence
q

Hom(Z,K) ~ Hom(Z,X) 3 Hom(Z,¥)

is exact, i.e. the first arrow = 1is injective and its image consists of
the morphisms from Z to X whose composition with both p and q are

the same.

IMPORTANT RFEMARK. 1In the previous constructions of XXY. and of

ker (X 3 Y) by means of solutions of universal problems, we reduced the

case of an arbitrary category C to the éategory of sets by reélécing the
object X € 0bC- by the sets HomC(Y,X) (for any Y € 0bC) . in other
words, we wefe able toAreduce the problem for an arbitrary C ; to the
category of sets just by the substitutions X+ Hoﬁ( X0 |

Now, I will give two specif;c examples. Let us take the category §

of groups for instance. Here, there are products (the usual products of

p
groups) and there are kermels also, because if X 3 Y represent two group
, 2 o
homomorphisms the set {x € X|px = qx} 1is a subgroup K = ker(3) |,
' q

which turms out to be a kernmel in the categorical sense!

Now let us give a third construction which is important.

FIBER PRODUCTS IN C : Let us assume that we have two objects X,¥Y
lying over a third ome S i.e. we have two structural morphisms £,g |

(ef. Ch. I, §1):

I1-1-7
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X Y
(1.12) X%
.8

We want to define & third object of C 1lying also over § , which we call

the fibre preoduct of X and Y with respect to S(l),; and we denote by

XXSY , which for the category of sets, XXSY should be the subset of the

kordina'ry set-theoretic product X XY consisting of all pairs which have

the same projections by £ and g (Cf. (1.7)). XXSY is nothing elsle

as the usual product in the category C/S . In other words the fiber
product, demoted usually by XXS Y for short 1s actually a morphism

XXSY 4 S in C making commutative the left diagram below

' X.{"‘XXSY——)Y L€ 2 ~—Y
(1.13) \i/ \L/
. s s

in such a way that for every Z 2 S in C making commutative the right -
diagram above it is possible to £illin the dotted arrow below in a unique

way to construct a commutative diagram

A\ .

SN

(1.14) - - (‘ . ‘ X b 4 't-—)f
‘ N’

(-. N

REMARKS:

I)The fiber product XXSY can be defined in terms o;’ products and

£ g , .
_ kernels. If we have X =+ S, Y* S we construct XXY in C (if it

(I)Ihis is an abuse of language (and ‘ XXSY an abuse of notation), £ and g are essential.

II-1-8
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(Ex £)ep

N —_—
exists) and then we comstruct (if possible): ker(XXY) SXS .

(g X g)°q

Thus the existence of products and kernels imply the existence of fiber-

products
1)Conversely if arbitrary fiber products exist in C , there exist
final object C (2 product of an empty family of objects of C , cf. page
56) and then XXY = X)%Y. Similariy we can see that there also exists
arbitrary products. If arbitrary finite products and finite products

exist in C we can define the diagonal AX =X XYX , the diagonal morphism

5X: X - AX . The silly commutative diagram below

xx_X
x \
(1.15) X\l‘/x
IX X lI’(
shows that 5Xs is bijective and we have two canonical maps inverse to
u - ~
H - -
! each other X « AX . Now the pair of arrows X 3 Y can be transformed into
; : (u,v) v
the unique arrow X 3+ YXY and we can close a

commutative diagram below

by completing the dotted arrows:

— Y
a,1y
(1.16) vy

—> YxY

(u,v)

>~ {"-*N

Then K = ker(u,v) = XXYXYY' with respect to the two morphisms (u,v)

Y’lY) . This is an abstract version of the diagonal trick (inter-

section of the graph of (u,v) and the diagona%ij

and (1

{ﬁaw let us see how fiber products can be interpreted as base changes

11-1-9
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in an arbitrary cétegory, following GROTHENDIECK's own wordiij

Let us interpret the fiber products alternatively as being an operation
of base change. Let Qs consider two objects X,S' (which will not play
the same role) lying over § fETe. we consider two morphisms as shown in

the diagram below:

X , where X can be viewed as a kind of '"fiber space over §"
g ; il and S' 1is viewed as a ''mew basis" (cf. the set-theoretic
pull-back interpretation). Let X' =AXXS S' be the fiber product of X

and S' over S . There are natural arrows of X' over X and over St

fﬁéking commutative the diagram

3
(1.17) z's, l
S

The arrow X' 4+ 8" defines X' as an "object lyine over S”.(l) I wanﬁ
to characterize X' over S' in this yoga ‘rgér St =23 fixed:and X
variable . Ihe solution will be a kind of tautological reformulation rgf
the defini;i;n of XXS %j when the "optic' has been changed a little bit.

I look at the two categories (/S and C/S . Tzf. Cch. I, §EJ ; there

are two natural functors ¢, going in opposite directions:

® v ®
(1.18) ¢c/st 2 els Xr X', z2'm 2)

P

. ©® )
where ¢ 1is the composition functor C/S' + C/S , i.e. whenever I have an

object Z' =+ 8' over §' I map it into the composite @(Z') + S as
3 ®

(l)I.e. somathing corresponding to the intuition of a fiber space over X' ,

11-1-10




I |

~51-

indicated below (i.e. Z' =4 §' goes to (Z' g 8) = ¢") (1). Now the

2t construction :{xss' can be viewed as a right adjoint of ¢ .
Y

‘g:\\\ﬂ S Precisely, we ha?e the adjunction relation

t 3 A 2
omy ;< (0@"), ) 3 Homy o1 (2, 8(0) D

we leave the trivial wverification to the reader; the important point that

éROIHENDIECK wants to make clear is the following:

Let S' 4 S be a fixed morphism { "base change” in an arbitrary
category C). Theén the composition functor ¢: C/S' 4 C/S (o Z' 4 ¢(Z"))

3)- . :
has a right adjoint §: X = Y(X) = X! =I{XSS' which is the fibér product

or pull-back .

In other words im any C any fiber onroducts can alwavs be interpreted

ON

as a base change.

f_: REDUCTION OF ANY INVERSE LIMIT TO THE PREVIOUS PARTICULAR CASES.

. L .. (5
SIMMARY. We are going to define the inverse hmlc( ) of an arbitrary diagram in the category
C .  Such diagrams appear as concrete realizations in C of an abstract diagram D of '
vertices and arrows. The previous constructions of ZXY, XXSY ker(u,v) will appear as

particular cases. The inverse limit of any diagram D 4in C , F = 1im D always exists in

(Dne constderation of the diagrax 8’ 25+ I 1a asyrmecric...

(z)rhus @ is a kind of forgetful functor (forgetting S' for the benefit of §).

.(3) The reader should racall thar the cotations X,Z' are abusive. 3Zecally the cbjects of
/S, C/s' are structure arrows X =S, 2' 48l . :

) ﬁ-tecall the (0fficially well-known) notion .of adjonctiom. Lat ?,G be two functors

tumning in opposite direcricns between two fixed cacegories 3,2:

2l
G

Let us 2ssume that for every pair of objects D € Gb8, E € 0b2 there Ls a fumaterial
bijection (called adjonczion): .

¢D Z Eans( G(E)) =1 E!oma("(D),E)
.o we szy that F (c) harﬂzht (lafr) adjoint to ¢ (F) « Usually g:D z is clear
encugh (a3 in the text and 12 {31 not wmade’ explicit., Cf, MACLANZ's Category text Ch. IV

Adfoincs, page 77_1

(S}Ml-b.lcks in American catagorical parlancs.

1I-1-11 11-2-1
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the enlarged category ¢ , but it does not need to be an object of C . It is just & contra-
F belongs to the essential image of C in C by

variant functor from € to Sets. When
the inclusion {: CS C , in other words when [ 1is representable (for instacce F ~ hx ,

(X € 0bC)) then we write X = lim D, but them X becomes an object of C determined up to

isorrorphism.

We shall show how the general inverse limits in C can be reduced to the cases of §1.

ABSTRACT DIAGRAMS.

Let us start with a diagram D , which is just a set

Ao .
L I 7 of vertices DO and a certain set of arrows D1 "joining
2
certain pairs of DO" (something very abstract!) and two
maps from Dl into DO:
-5
(2.1) - Dl a'DO

associating to every arrow two vertices (its origin and its extremity)

the source and the target of the

/3
;o . L
This is what we call a model for the diagram!® )

respectively, also frequently called

arrow.

_Now; let us consider a category C . Then a diagram of type D in

one associating with every vertex of

C is just a pair of maps, the first

D an objectrof C: DO -+ 0bC and the second one associates with every

o A 9
abstract arrow of D a morphism of ArrCs= Cl( / preserving sources and

a)C.‘.f. for further reading MACLANE Category text, III Universals and Limits, page 55.
GROTHENDIECK used in his course the terminology inverse and direct limits. The following

dictionary can be useful:
Inverse limit = projective limit = timit = left roots = Lim

Direct limit = inductive limit = colimit = right roots = lim
-

GROTHENDIECK used the French terminology (projective, inductive limits) in his original .
papers. Cf. for instance SGA4-I, Exposé I (Prefajsceaux). T

(2)
- F - - o ol e rams et .
Such abstract diagrams ave MACTANE's G?dPﬂS Floc. eit, 1I, §7, p. 48). "Every category
éetermxnes a graph (= diagram) forgetting which arrows are composites and vhich are
identities', Conversely there are ways to 'generate" catcgories from diagrams by freely

coaposing the arvows in some wiy. Cf. loz. cit. for details,

I1-2-2
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targets, i.e. in such a way that the following square commutes

Cl‘Arrc‘—Dl
i o

(292)
co = 0bC + Do

1 - . .
EXAMPLES, )Let us first comsider the case of two points: ® s (with
no arrows). A diagram of this type in C consists in giving just two
objects X and Y , in the category C .
2) . . . . .

Consider a diagram with two points and two arrows in the same
direction: ¢ 3 e , It corresponds to a pair X,Y together with two
morphisms from X into Y : X ¢

3 . . ‘ .
)In order to define fibre products I(XSY' we shall consider three

~vertices 1,2,3 and two arrows 1-3 and 2-3 with the same target.

(2.3) ' '\./" . : I\{ /Y ~

corresponding to three objects X,Y,8 of C .

! I summarized here the previous examples of §1:

PIBRE
PRODUCT KERNEL PRODUCT
Dizgram type ¢ o ° o e e
L
DIAGRAH in C X x3y x\’ Z
S
Lim Ixy  k=ker(X3Y) X x¥

I1-2-3
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Now we want to define tne inverse limit of any type of diagrams in
the categery C - abstract diagrams . I will now use small letters

define t £ di d capi :
d’do’dl to define types of diagrams and capitals D’DO’DI to describe
effective diagrams.

Let D be a diagram of type d in the category C-. D 1is defined
by‘associating with any i (€ do) an element D(i) € 0bC and with every
arrow @ (€ dl) a morphism D(p) € ArrC, satisfying the commutativity
property (2.2).

We call inverse limit (lim D) of such a diagram D an object
L € ObC together with a family u(i) .

. u(i)
(2.4) L -+ D() i€d,
of morphisms of I into the D(i) satisfying the following axiom:

For every objact Z € ObC of the category and evary morphism Z - L

we define a mip

2.5) Hom(Z,L) » T Hom(D,D(i))
;
0

by composition of arrows

u{i)
L =2 D)

(2.6) T/
Z

in such a way that (2.5) is injective and the image should be exactly the
set of all morphisms from Z into the various D(i) which is compatible

with all the arrows of the diagram, i.e. if D(i) - D(j) belongs to D

then the triangle

~y

3

Jre

[N
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‘.

D{v)
D) —>D(J)

(2.7) 'I/I

A

is commutative.
A set of morphisms Z - D(i) satisfying the previous commutativity

condition for all the D(p) € Dl is called a coherent set of morphisms.

Then, we can express the previous property stating that (2.5) defines

a_bijective map between Hom(Z,L) and the set of coherent sets of

morphisms in D , i,e.

(2.8) . - Hom(Z,L) 3 T Hom(Z,D(i))
i€d,

coherent

This can be said also in the following way, by reducing the general
case to the category of sets as follows:
Let us assume C = Sets ; then all the D(i) are sets and the morphisms

D) g D(j) are maps between the corresponding sets. Then we can look

at the subset of the product of the Hom(Z,D(i)) which consists of sets
of morphisms compatible with the arrows of D and commutes for every
D{p). of the diagranb. Then the universal property defining 1im of any

diagram D of type d 1in a category C can be stated as follows:

An object L € ObC is the Lim D(i) of the diagram D of type d
(—.

iff there is a bijective correspondence with the limit of the Hom(Z.D(i))

{(of type D) (in the category of sets):

II-2-5
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(2.9) Hom(Z,L) = l&m Hom(Z,D(i))

for every choice of the object Z of 0bC.

(H

- Now, we are going to prove the reduction theorems:

Let ( be an arbitrary category. The following properties are

equivalent:

1 . .. . .
)Arbitrary inverse limits exist in C

2 . . ' .
)C contains arbitrary products and arbitrary kernels for pairs

of arrows.

3)C contains arbitrary products and arbitrary fibre products.

PROOF: 1t is sufficient to remark the existence of a functorial

isomorphism

I D(target of j))
jEdl

for a diagram D , where the two products are taken over do (set of

qiie

(2.10) lim D = ker( 0T D(i)
Lol s -
lcdo

vartices) and d1 (set of arrows). The two arrows of (2.10) are

defined, by ﬁeplacing with unique arrows u,v , the two sets of arrows

prtarget 3
I D(i) == D(target j)
16&0
and the composita of
PTsource i D(d)
I D(i) s————> D(source j) —> D(target j)

ied,

REMARK. - Since the comnditions 2), 3) are satdsfied in the category of Sets

(l)we borrow the explicit description of this reduction from SGA-4-I, Expose I, page 1l. It
should be taken with the usual grain of salt because we do not care here about the foundations
of category theory, universes, etc. Besides the abstract diagrams d can be replaced by a
suitable "“small"” category 8 and the concrete diagrams by functors 8 -+ C . ]

T

! II-
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we know the existence of arbitrary inverse limits in the category of sets.

Now after this preparation, we recognize easily that, for any given

~

category C the 1im D always exists in the category C , since the
.

construction is reduced elementwise to the category of sets. We say that

lim D exists in € iff the limit of D in C 1is representable, i.e.
=

iff 1im D belongs to the essential image of 1i: CS C . Let
(._

lim D ~ hL (L € 0bC) . Then the object L (defined up to iscmorphism in
k— .

C) is called an inverse limit of D in C and we shall abuse the notation

by writing L = lim D .
‘—

F?T DIRECT LIMITS. The direct limits in a category C (cf. footnote L,

11-2-2 page 62) correspond bijectively to the inverse limits in the opposite

. ° B -
category (C . These duality considerations are particularly important since

the main result of Vol. I is that the category Aff of affine algebraic

spaces (that will be identified in Ch. IITI with the category of affine schemes)

ig isomorphic with the opposite category ( of the category (G of commu-

tative rings with unit.

Because of this fact, although we could honestly leave to the reader
the main facts regarding direct limits, we shall elaborate a little bit on
certain basic notioms, by dualizing explicitly the constructions of (II.1l)
and (II.2), i.e. we shall start by dualizing products, kernels, fiber
products as sums (& coproducts), cokernels and amalgamated sums.

SUM < COPRODUCT. The basic set theoretic remark is the discovery by
the pioneers that the disjoint sum of two sets A,B (union of two disjoint
copies): A + B (@ A I;B) has the dual ;;operties of AXB, i.e. to the

projections AXB -+ A , AXB @ B correspond the canonical injections: [

II-2-7 11-3-1
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{ A A+B, B A+B and the identification (II, (1.2)) is replaced by
(3.1) = (1.2)" HomC(A + B,C) = HomC(A,C))<HomC(B,C)

defined by filling in the dottal arrow below in order to make commutative the diagry

(3.2) A+ B ----=-- Yy C

{dualize (11-1-10) or (11-1-11)). The property (3.1) is

taken as the definition of A + B (» AL B) of the sum (= coproduct)

of two objects A,B in any category c.

The extension to any family {Xi}iéil of dbjects in C 1is done

accordingly by dualizing (1.1’ o

(3.3) Hom.( 1 X,,z) 3 I Hom,(X,,2)
Clier * e o F

As for the product one can wonder whether or not the sum exists in C

but if it does exist, it is defined up to a unique isomorphism,

i f
DUALIZATION OF THE KERNEL (COKERNEL = COEQUALIZER = coker (X : ¥)). The
' . £ g
universal injective arrow K 3% 3y (fei = gel) is dualized in our case
£ B g
X : v (sense of the arrows reversed) by a pair (Q,p: Q « X) such that
g
D £ p' £
Q » X t Y commutes and for any commutative diagram Z & X tY there should exist
g ® g
a unique morphism Q =+ Z such that p' =©e°p . In other words Q looks

like a universal quotient. The corresponding pairs of dual diagrams indicate
clearly the names equalizers and coequalizers given by professional categorists

£
to kernels and cokernels. Geometrically ker(X 3 Y) arises by considering
g

(x ex|fx) = g(x)} . We would like to change the role of X and Y . J

11-3-2
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i
p
X (K9 X)is a quotient object Q (Y + Q) such that the compositions of

£ Fos
the two arrows X =+ Y, X % Y with p become identical: X1+ Q enmales]
[ g

' This is not literally possible. What we obtain(instead of a subset K of

DUALIZATION OF FIBER PRODUCTS: AMALGAMATED SUMS. The dual of a ﬁibe{»

product X)(SY (» a product of two objects in the category C/S) will

be a sum in the category S/C . 1t is usually called an amalgamated sum

in C . The best example is the usual union A U B of two subsets A9 S,
B S of a set S . We can obtain A U B dividing out AL B by the
equivalenée relatioﬁ defining the identification a ~b (@ €4, b € B 1iff
a = b).

The extensions of these notions to arbitrary families {Xi}iél, can be
done directly, i.e. dualizing (1.5)', (1.11)' (cf. page 55) |

X, » 1 X, Hom,( I X.,2) 3 1 Hom,(X.,2)
ojer omciEI i i€1 T

and the sum of an empty family of objects of C 1is an initial object ¢, .

£

(cf. I, §1).

A good exercise would be to see how the existencé of arbitrary finite
sums and cokernels imply the existence of amalgamated sums, etc., and
finally the reduction of érbitrary direct limits to the previous particular
cases.

The device of reducing the Lim in any category C to‘the category of
sets is done by enlarging C to the category ( of contravariant functors
C - Sets , where every X € ObC was identified with the functor hX

represented by X . A similar approach in &c enables the reduction of

the study of direct limits to the case of sets.

11-3-3
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II

LIMITS IN THE CATEGORY AFF,
. —k

SUMMARY. The inverse limit constructions in Affk are deduced by duality from the direct

limits in the opposite category Gk . The main property is the existence of arbitrary sums
-3, sums,

(2 coproducts) in Gk coming essentially from the tensor product” A®kB (» categorical sum
of A and B, A,B € Oka)‘ cf. §6. In Gk » arbitrary cokernels of pairs of arrows exist.
(cf. §3). A4s a consequence, in Affk arbitrqry products and kernels k(X 3 Y) of arbitrary

pairs of arrows exist and, because of the reduction theorem of §2, we can prove the existence

of arbitrary inverse limits in the category AfIk .

Regarding direct limits lim X in C= Affk ; we know that they correspond to inverse .
limits liw Ai'{ki = }ki{ Vi€ 1} in the opporite category Gk' rgi € Oka , ¥i € Ej
These inverse limits always exist in Gk > Since the set-theoretic limit
of the underlying sets of the Ai always exist and tha algebraic structure carries over. The

trouble arises when we want to interprer them in the opposite category C , 1.4, the dual diract
limits in C are not too reasonable! For instance, passage to quotients in AfEk gives patho-

logical results because it would be not the same as passage to quotients in the mora general

c&tegory of schemes (cf. Vofs II).

There is just ome operatiom, which fs alvays reasonable: the finite sum operation X,
. i

> oce 3

11 - {l,Z,...,n} finite index setl in the category C of affine algebraic spaces over =

B that we are going to describe in detail below.

’

4. rCZTE¢ORICAL GENERALITIES ON AFFINE ALGEBRAIC SPACES. The two cate-
gories Afﬁ, (Affk) of affine algebraic spaces (a.a. spaces over k’,

"k € 0b(@) v%have been defined already in Ch. I by a canonical identifica-
tion with thercategories,(la (G;) opposite to the categories C, le)
of commutative fings with unit (k-algebras, (k € OﬁGj ) More precisely

G and "G; are identified with the category of covariant representabla

functors (cf. Ch. I, §1)¢

(4.1 ' ,:G Sets (or G,_ - Sets)

for eavery A € 0bG (or A E Gka) . Besides we have AFff = Aff:Z .

I1-4-1
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From these definitions follow many simple consequences of a pure

categorical nature regarded as ''general abstract nonsense'’; I summarized
2

.a few of them, just to show how easily we can deduce so many properties

just by 'reversing arrows'. But I am well aware that some old-fashioned
reader will ask, why this is called geometry. The most beautiful answer
is the introduction of the affine schemes (c¢cf. Ch. III), i.e. by giving another

interpretation of by a geocmetric object, bijectively attached to X

A

the affine scheme Sch A = (Spec 4, A) (a certain topological space: the

X
A

Spectrum of A (Spec A) with a structure sheaf of local rings K)g But
even without thét, it is possible, just in the framework of representable
functofs,to answer to all criticsms by showing how all the specffic

properties of the categories (, Gk have geometrical interpretations

lacking in other categories.

1) GENERAL ABSTRACT NONSENSE: The map A + ZA is a bijection

£ %
ObG e Ob Aff . If A B is a morphism in QG , f : EB - IA is a morphism

in Aff. A = A goes into the identity of EA_. Compesitions are 'anti-
£ g% f* , )
preservedf: A-3B 5 c = EC -+ EB - EA,° In other words, there is a
contravariant functor G - Aff which defines actually an isomorphism
’ V ° - 3 . 3 3

between Aff and the opposite category -G . (Similar situation Gk - Affk
for any k € 0bG) .

The relationship between (G and Gk is a particular case of what we

stated in §1 for any category C . Precisely Gk is the same as the

category k/G whose objects are the ring homomorphisms k =+ A with

variable target A (€ 0bG) . Thus the algebraic spaces over k can be !

11-4-2
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jdentifiaed with relative objects of Aff/%Z . Precisely, dualizing k 3 A

we have ZA - Ek (and conversely). In other words Zk is the final

object of the category Affk , since it is the dual of the initial object
of Gk . (Cf. ch. I, 81).
2) GEOMETRY: We will appeal to geometric intuition (I still like

Y . . - . -
that.) to determine what the points of this space xA are? Let us

recall Cch. I, §3:

An R-valued (R € 0bQ) point x of EA is a ring homomorphism

x: A %R and conversely. (Cf., §1) The 'value' of any f € A at the

point x 1is given by the silly formula. £(x) = x(f) . To make applied
mathematicians happier, we can assume R to be R , or ... The functor
IA assigns to every ring R the set of R-valued points of the space

(1)

EA: R~ ;A(R) = HomG(A,R) (funétofial in R).

f—_—- I am afraid that this still did not convincé the hypothetical (?)
old—fashioﬁcd reader becausa in any category C I can fix an object
A E'ObCf, and nobody forbids me to call R-valued points of the "Space”

X, the af;ows A =+ R ; sure! but I would 1ikc~to have local coordinates;

A
any ;A should be embeddable in some affine space ﬁEI = X :
o ' . *k[T.]iEI

(® existence of a surjective map R-+ A). But if we want to have coordinatés,,

théy should be elements of a ring at every point... To be brief: we are

going to use specific properties of the category G , both in 1I-5

(recovery of A from Ek) and in §6- as well: the constructions of the funda-

mental inverse limits: Cartesian products, fiber products, intersections
. b

(l}If we select a set of generators {fi}iEI in R, x has coordinates ri(x) = x(ri) (silly

GROTHENDIECK does not like to assume I to be finite for

formula) in the affine.space E
1f I ={1,2} or {1,2,3} we might discover that

techniecal rcasons, but he is tolerani:

2
IA has poiuts with coordinates in R or R3...

11-4-3
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kernels., E£very time we shall replace the category Aff with its dual by
reversing arrows and then we shall transform the problem in Aff into a

problem in A . This problem in A involves BOURBAKI's commutative algebra.

Then we dualize the solutions coming back to Affk, we use geometric

intuition to do that... The first instance of this construction is to

recover the ring A 1in terms of the affine algebraic space ?ZA .

' 1
GROTHENDIECK, will convince us that the set of morphisms HomAff(IA,IE )

&

i : .
- . , . -
of the .soace EN 11:.1 the affine ll.ne E zk[T] has a natural ring

structure and moreover there is a canonical isomorphism

i (D)
(4.2) HomAffk(IA,IE Y3 A

Let us follow GROTHENDIECK's own words:... ‘

5, RECOVERY OF A FROM EA....., and we want to give an interprétation of

the ring A in terms of the affine algebraic space }’,A over k , i.e. in

terms of the representable functor 'IA A € ObG.k) defined by

H 1 — i 1
{5.1) k' » EA(k )y = Hom.k_alg(A,k )

We can do it, actually, in a very intrinsic and formal way. Let us

look into the set

. 1 4 - - . ‘
(5:2) AHomAffk("{A’E )7 (E Ik['l‘] the affine line over k)

1) ! L
This is the closest thing we can imagine to the classical case involving the classical restrictiongy
cfJ0,1: A = k[g,...,gn], Nil A = 0, k algebraically closed, 4 becomes the ring of polynomial

functions of the algebraic variety Max A, but polynomiavl functions are maps Max A —»]EL (k)...
GROTHENDIECK recovered this situation even when Awi3. an arbitrary commutative ring with unit:
(A might have no stfbfield k , Nil A may be # 0,...). Of course in the absolute case

Aff = AffZ and E* = "Z[I'] .

IT-4-4 II-5-1



of morphisms of EA into the affine line over k . Since F' is represented

by the pplynomial ring in one variable T , we have the set equivalences

Hom, c¢ (EA:HEW 3 Hom(k(T1,4) 5 A

L L

(5.3)

obtained by arrow-reversal in the two opposite categories, where the last

% is a consequence of the fact that any (k-alg)-homomorphism u: k[T] » A

is Qniquely determined by u(T) € A and for any a € A there exist aunique Uu

such that u(T) =& . In other words the underlying set of A 1is

But let us recall that E'_is the forgetful

recovered from the set (5.2) .

its underlying set. But k! hasa

(D

has a k-algebra structure’ .

. 4
functor assigning to every k-algebra k

k-algebra structura. Thus our functor E!

] 6. FIBER PRODUCTS AND KERNELS IN AFFk o

. - SMMARY. The inverse limits of any type in Aff
correspond bijectively to the dual direct limits in the opposite category @ (c£. §3). )
K .
Because of the reductiom of §2 it would be sufficient to establish either ’

”Thc existence of arbitrary products in Aff, ' (including the exis.tence of &/ final object }’.k

in Aff

” and fiber products’ XXSY for any pair X —+5 , Y5 in Affk) .

or

2)The existen‘ce ‘of arbitrary products in Aff  and kernels of arbitrary pairs of morphisms
S
IA:‘IB’ |
By duality we need to check the existence of arbitrary coproducts (sums, amalgamated sums)

in G‘k and coicernels of arbitrary pairs of arrows A E B . 3Both type of verifications are

v
trivial for a reader with an adequate background in commtative algebra. The finite sums.can
always be reduced to the case of two k-algebras 4,3 . Their categorical sum in G‘k is the

- ! Eﬁ quote 18 r der can lock ar
( j QOTHENDIECK ted h previous lacture cf. AAG, In the meantime the ead
DIEUDONN’EI, AdVaDCGS, II, pagch‘o oT EGA"SPILQ&C: > §Q.(q page 41,

@) A '
The embedding 1: C= C (cf. Ch. I, §1) identifies any I, € 0bC with a contravariant
functor frem C to sets or equivalently with a covariamt functor from G’k to sets:
x ' '
k' Homk-a.lg(A’k ), k' € Gk . We know (cf, §2) as a purely categorical fact that 1 is

compatible with inverse limits (ef §2) In othér words: if y

e inve . . In, : we have a diagram in C its

inverse limit ltm 1(X02 always exists in C ; we say that it belongs to C iff lim i(xa)
-

is repr table,
esentable Then the l&m in C is defiped up to isomorphism: as anyone of the

iepresencing.objects of C . Then the important statement made is that if we have any diagram
n C and we tal'ce'the inverse limig in C , this inverse limit is always reoresentabls 8
Dually, direct limits of auy type always exist in the category of k-algebras =

1I-5-2 I1-6-1
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tensor product A®k B . In geperal it is pvossibl‘e to define @k Aa for an arbitrary family
a a€l

of k-algebras. On the other hand coker (A £ 3B) is given by the canonical surjective (k-alg.)-
v

homomorphisms A - A/T where

T = {{deal of A generated by the set u(b) - v(b), ¥b.€ B} "‘}

Let {Xa}aél be a family of affine algebraic spaces Za (€ ObC, Y € I)
indexed by a set I (not necessarily finite). Then T % can always
) ) o€l
be defined (up to isomorphism) (cf. §1) as an object of C . This is

equivalent to saying,

In the category G'k of k-algebras, the sum of an arbitrarvy family

of objects always exists. Precisaly: It is the tenmsor product & A .

. @€l
In other words: Lo
Let 'Ea = "£A Vo € 1), i.e. Ea is the affine algebraic space
o v .
represented by the k-algebra A_ € 0bG, . Then I £ 1is represented
o k o —~
o€l v
by the tensor product:
(6.1) I'IEA =ZA & A= &kAa
o€l
acl

because A 1is the categorical sum of the Aa (cf. §3). The verification

of this property is just a rephrasing of the well-known universal property

1
of % ()
k

In order to show that A 1is a categorical sum we shall show that the

injections (= 'coprojections, cf. §3) ia: Aa-* A (Vo € i’) given by

1
( )Cf. BOURBAKT, Linear algebra, §3, page 76.

I1-6=2
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&
(6.2) i(a) =19...81829...01 (Ya € &)

(with a factor 1 for every index. § # o), have the well known universal
property of the sum (cf. 83).
Let us check first the sum property for two factors: AA'®kz%”
(A',A" € 0bC) . -Then the injections are defined by: a'**a'@il a”r*ISKa”
Finally when the set of indices I is infinite, we observe that the
family of finite subsets I' C I form a filtering direct system and that
for every‘finite I'CI we can define A(I) =@ A . Besides i

ot &

I'< 1" <1 (1" finite) there is an induced k-algebra homomor-

!

phism A(I') » A(I') . Then we can define A(I) = lim A(I') . In fact
. : , B : ) o -+ - I
@)

the direct limit of the underlying sets exists and the I' finite C I

k-algebra structure carries over.

‘ The existence of fiber products (cf. §1) XJ% Y for any pair of

et SR

f

morphisms -~ X - é; ¥ =S5 in Affk is the same, as we know, as the

usual product of these two objects in the category Affg/s o .This category
Affk/S is opposite to the category G, where A is the k-algebra

representing S . In fact, let us assume

Then we have k-algebra homomorphisms (going in the opposite direction as
* *

£,8) AZ&»B, 4% ¢ compatible with the k-algebra structure, i.e. defining
commutative diagrams

A———>3 ¢

(6.3) I/ | 7

(l)A short introduction on Direct limits for algebras can be found in Exercise 14 of ATIYAH- l
MACDONALD book pages 32, 33.

e

I11-6=3%
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T—}where the vertical arrows are the structure morphisms of A as a k-algebra
(cf. Ch. I, 82) , As a comsequence B,C become A-algebras, R Rg ¥

exisﬁs and is represented by the tensor product B@A(Z. We have:

g
The fiber product XXSTZ f X § S, Y+ S exists and is equal

B®, C is the A-algebra deduced from the two algebras,

-

ED , where D

*

*
B,C defined by f ,g ,(l)_J
The two previous verifications and the first reduction of §2 proves
the existence of arbitrary inverse limifts in Affk .

An alternative way of proving the previous statement is to show the

. u
existence of kernels ZA 3 EB of arbitrary pairs of arrows A : B in the
v
category of k-algebras,i.e. we want to prove the existence of a cokernel
u _ ) W
(A : B) in Gk , L.e. we want to construct a universal arrow A = k'
v

(k! € Oka) making commutative the diagram
u
*—
(6.4) k' «ACB
v

in the category Ck , (® woeu = wev) . This means that for every b € B

u(b) = v(d) = we(u() - v(b)) = 0 for every b € B . In other words:
(6.5) u(d) - v(b) € kerw ﬁb €38

Conversely any w of Gk satisfying (6.5) makes commutative (6.4).
But (6.5) implies kerw> ¢ = {ideal of A generated by all the differences

u(d) - v(b), ¥b € B} . Then it is well known that A/9 together with the

(l)l‘he reader caneasily check , just by reversing arrows, how the fiber product diagram (on the
left) comes from the tensor product diagram (on the right),

? F

1 s

AJ

&}X Y . /;ek
i <

' 'a\ *
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' ; P .
canonical surjective homomorphism A - Al3 is the cokernel that we are

looking for, i.e. for every w making commutative (6.4) we can fill

dotted arrow below making commutative the diagram

: AJ?{JL-Afén
(6.8) I

A“J‘
k'

7. TFILTERING INVERSE LIITS. DIGRESSION ON NOETHERIAN RINGS....let us

give a last example of inverse limits TZ; C= Aff&_}‘ Let us a
filtering inverse system of objects {Xi}iEI (Xi € 0bC, Vi € I)
indexed by a filtering ordered set I (or a filtered category). Of course

the inverse limit X = lim Xi correspond to & filtering direct limit in
*—

the category Gk of k-algebras. We are going to check that this is one

example where the pure set-theoretical constructions carry over the

k-algebra structure, L.e. the underlying set of A = lim Ai is the.direct
: -

i€l
1imit of.the underlying sets of the Ai (¥i € I) . But, because of the
filteriﬁg the structure of k-algebra is presarved...

Technically the previous construction is used in algebraic geometry

to reduce the case of an affine algebraic space ZA over k represented-

by an arbitrary k-algebra A to the case of finitely generated k-algebras

ramely X, 1is the inverse limit of a filtering inverse system of %,
. 1
where the Ai are the finitely gemerated subalgebras of A ; more

precisely: A 1is obtained as a filtering union of k-algebras which are
finitely generated over k , i.e. if A', A" are two finitely generated

subalgebras of A their union is also finitely generated. Therefore,

f;; dualitzl'the affine algebraic space EA over k 1is the filtering

II-6-5 II-7-1
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inverse system ZA s
i

where A, TUnS through the family of finitely generated
k-algebras.
In many situations statements which are first proved in the finite
type case can be carried over to the general case by a limit process.
Let us now make a little comment about the XA of finite type
over k!:

An algebra A over k 1s of finite type over k r:: finitely

generated over E;J_ if and only if A = k[Tl,TZ,.,.,Tn]/Z , i.e. 1ff A
is isomorphic to a quotient of a polynomial ring with coefficients in k
in finitely many variables Tl’TZ""’Tg . To give such an isomé:phism is
the same as to give a set of n genarators of A as a k—algeb;a. In
other words A 1is described by a polynomial ring togethef withaa:bunch

of equations TEETI’T2’°"’Tn) =0, £ E.EJ and it is sufficient to take
any family of generators of this ideal T . 1In order that the datum of A
over k could be considerad altogether as a datum of finite type it is
convenient that J has a finite number of generators. So, we will say
that A 1is of finite presentation if A = PI/J with I finite and T

(1

finitely generated. v _ .

There is another theorem of HILBERT rzge-Basissatf_l which says that
in many cases every ideal in such a polynomial ring k[Tl,TZ,...,Tn] is
finitely generated, in other words the algebras of finite type are already

of finite presentation.

&Y

It can be easily shown as an examrcise that {f J is finitely generated for the presentation
A= PI/J » the same happens for any other presentarion 4 = PI,/U' (I' finite), L,e. J'

muat be also finitely generated.

I1-7-2
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Precisely:

If k is a field (in the classical case k = R or L) then any ideal

of a polynomial ring over k with finitely many indeterminates is finitely

generated.

A ring in which every ideal is finitely generated is called a Noetherian
ring. This means that the Basissatz of HILBERT can be expressed by saying

that any polynomial ring in finitely many variables over a field is

(1

Noetherian.

Of course a field k 1is trivially a Noetherian ring. The fact that
k[T] is Noetherian comes from the fact that k[T] 4is a principal ideal
domaine<2) A better way of expressing the Basissatz is the following:

If k is already a Noetherian ring then k[T] is also Noetherian.

(cf. BOURBAKI, or ZARISKI-SAMUEL. )

~

Then, by induction we see that if k is a Noetherian ring a finitely

generated algebra over k is the same as an algebra of finite presentation.

In other words, this means that for every closed algebraic subspace

X ED represented by A = k[Tl,Tz,...,Tn]/Z , X can be described by a
‘ (3)

finite number of equatioms.

8. DIRECT LIMITS IN AFF, .

GROTHENDIECK's SUMMARY:...regarding direct limits l_i’m Xi in C < Affk we know that they
enrrespond to inverse limits (im Ai rx_l =%, ¥i € 1| in the opposite category
e
i

Gk ﬁi € 0b Gk’ Y4i€ I]. These inverse limits always exist in Gk , since the set-theoretic

(I)Equivalently (after Emmy NOETHER) the ascending chain conditions (a.c.c.) for ideals hold:
any increasing sequence of ideals ¢; Ca, C ... &2 C... of a Noetherian ring A4 {is

am = am+1 T vea or any strictly ascending chain of ideals

g, €a, € ... is finite. .
1y 24 '
(2>Bu: for k{’rl,TZ] it is more difficult to see...

stationary o @m, such that

(S)But GROTHENDIECK expressed again his reluctance to unnecessary restrictions. The canonilcal
cholce for generators of J 1s J§ 1itself which is rarely finita!

I1-7-3 . II-8-1
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limit of the underlying sets of the Ai always exist and the algebraic structure carries over.

The trouble arises when we want to interpret them in the opposite category C , i.e. the dual
direct limits in C are not too reasomable! For instance, passage to quotients in Affk gives

pathological results because it would be not the same as passage to quotients in the more
general category of schemes (cf. k/bZ,II).(l)
There {s just one operation, which is always reasonable: the finite sum operation
i) Xi 'ff = {1,2,...,n} finite index set | in the category € of affine algebraic spaces

g1
over k that we are going to dascribe in detail below,

Let X, = ;A € 0bC, ¥i € I be a finite family of affine algebraic
i :

spaces over k rapresented by the k-algebras Ai (€ Gk’ Vi €1I) . We are

coproduct, cf.

going to prove the existence of the categorical sum (®

§3) i Xi , equivalent to the existence of finite product$ in the
iel Lo
opposite category Gk . In fact the product A = [ Ai of these finitely

i€l

many k-~algebras is the categorical product and we have

(8.1) U2, =% <« A= TA,
jer &y A ier t

is represented by the product

i.e, the sum of the n k-algebras Ai

k-algebra 4 .

Let us prove that A = 1l Ai is the categorical product of the n
iel
k-~algebras Ai: First of all an element of A is an ordered n-tuple

(al,az,ﬁ.,,an) (ai € Ay il= 1,2,...,n) witk the sum and product of two

elements defined elementwise, the unit element of A being (1,1,...,1)

and the structure morphism k =2 A given by k(al,az,...,aﬁ) =

= Ckal,kaz,,..,kan) (¥» € k) . We have a decomposition of 1 as a sum

of orthogonal idempotents: , l

(I)Ibis comes from the fact that the yoga we used so far r:;be&ding i: C+ % of the category C
to sets,

“of affine algebraic spaces over k 1in the category of contravariant functors from C
or equivalently in the category of covariant functors from Gk to seEiJ is compatible with

{nverse limits but it is not compatible at all with direct limits.
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2 .y
(8.2) 1= Eei ei=ei=(0,0,...,O,I,O,...,O) eiej=0 i#3i .
iel /o }

Wiy

There are =n projections p; ¢ A - A/A(l-—ei) = Ai(V € I) vwhere

AL - e.) denotes the ideal of A generated by 1 - ey - For any R € Gk

4

we have a bijection:

(8.3) HomGk(R,A) > irEI . HomGk(R,Ai)

GEMARK. The categorical sum of a family {Si}iEI of sets in the category of sets is the'disjoint

union u Si . The natural question arises if for a variable k' € Cka the set Z%(k') is

icx . :
the disjoint union of the sets % (k') ({ € I}. It is easy to construct counterexamples in the '
i {22

framework of classical algebraic geometry. The analysis of this naive assumption lead
GROTHEKRDIECK to study the notion of connectedness in the category Affk.... —

...now we want to see how the k'-valued points of IA(k' € Gk) look
like., The previous surjective maps A - Ai correspond to injective maps

;A - EA (written also Xi -+ X after simplifying the notations

¥, =% , %= zA)° For every k' we have an injective map Xi(k') -+ X(k)
defining a map of the disjoint union I Xi(k’) into X(k'):

i€l ' :
(8.4) I X (k") =+ X(kH

N iel
| The quéstion is to check whether (4) is an isomorphism. (Cf. the

footnote <} below to show that it is mot necessarily so). We shall now

’ /=N
et 3

D < iel
There are also set-theoretic injections a, » (0,0,...,31,...,0) but they ara not
goes to the idempotent & which is not the unit of A

G.k-motphisms because the unit of Ai

for- n> 1.

(‘2)Ef X,Y are irreducible affine algebraic varieties over the algebraically closed field k&
represented by the integral domains A,B XUY vepre-
sented by AXB is the disjoint union of the
k-valued points of X "and Y . If ICX, JC¥Y
are irreducible subvarieties "IuJ is a k'-valued
point of XJ|Y where k' 1s the restriction
k-algebra of AXB to IuJ_._l

(3t
Anyhow later we will interpret every Xi € 0b Affk ag a topological spaca with a sheaf of

rings on it, and the analogy I am going to make is quite relevant to the situation we are
describing here. :

I1-8-3
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of topological spaces Xi € 0bT in the category of topological spaces. X

a topolqgical space which admits the Xi as open topological subspaces
whiéh are mutually disjoint and cover X . Thus set-fheoretically X
is the disjoint union of the Xi and the'topology of X 1is the unique
one in which.every Xi is open and the induced topology on each Xi is
the giveh one. 1In other words U - (€ X) 1is opemn in X 1iff U Xi is
open in Xi for every 1 € I .

Now, on the other hand if we look at an arbitrary topological spéce

Z we have a map

(8.5) X, (2) » X(2) @
€1

)

T wonder whether (8.5)is bijective. This means that any contin@ous map
7 =+ ¥ can be factored in just ome way through ome of the Xi , l.e.

there exist one and only one index i € I such that the diagram

z-f4>x
%
commutes.

Now this is certainly true if 2Z is connected. But if Z contains

several connected components we can map two of them in different Xi's'
. ' 2
and the previous property would be falseg )

F;gning back to Affk we should expect that (5) should be bijective

in this category iff Z is counnected. This leads us to make explicit,

B &3] o
The wotation X(Z) 1s shor:t for HogI(Z,X) , L.e. it 13 tha ger of coatinuous maps Z -+ X.

(Z)IE} this stat i i
- cment with the classical algebraic-geometric situation described in the footnote

(2) of page n-a-;;}

I1-8-4
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the notion of connectedness in the category Affk .

CATEGORICAL DEFINITION OF CONNECTEDNESS. A topological space X is
connected iff any sum decomposition X = X'IX" &X' N X" =¢) implies
that one of the summands X' (or X'") 1is the eﬁpty set ¢ . Recalling
that ¢ 1is an initial object in Sets, we have the following generalization
to an arbitrary category C .

An object X € ObC 1is said to be connected iff whenever X is written

as a sum of two objects X',X'" € 0bC:
X =x"Ix"

this implies that X' (or X') is an initial object of C .(l)
An initial object in the category Affk is called, by analogy, an

empty affine algebraic space over k . It should be represented by a final

object in the category Gk . The zero ring 0O 1is such an object (i.e.

2
the product..of an empty family of k-algebras).<)

The initial object in Affk , EO is the functor assigning to every
k-algebra k' the set of morphisms O = k' . This set is empty if k' # 0
(i.e. if .1 #0 in k')(3>. -+ ++ - and it has just ome element, the
(4

identity for k' =0 . EO is called the empty algebraic space.

Now we can define connectedness in the category Affk . X = ﬁA is

called connected iff any sum decomposition X = X'I Y" implies that either

X' or X" 1is the empty algebraic space, i.e. iff any product decomposition

fi-)‘ge recall that ¢ is the initial object in the category I of topoicgical spaces as well.
(27 Te. for evexry k-algebra k' there is one and only one homomorphism from k' to 0 .

) Remember that an f: 0+ k' in G'k should have the property £(0) = 0,,£(1) = 1 and this
iz impossible if 1 # 0 in %k !

(8Y Howevar IO is not the empty func;:or. Por any A € Oka, :A is never empty since ‘EA(A)

contains always the identity IA: A=A

II1-8-5
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A = A'XA" implies that either A' or A" is the zero k-algebra. What
does this mean in terms of commutative algebra? We know that to give a
decomposition of a ring A' as a product of two rings A', A" is equivalent
to define a sum 1 = e' + e" of the unit element 1 €A as a sum of two
orthogonal idempotents(l) e'? = e, e = e, e'e" = 0%

We shall say that A € Oka ,;? gonnec;gd ,(d EA is conne;tgg) by

' e : S 2 2
abuse of language iff every decomposition 1=e' +e!, e =¢e, e = e,

e'e" = 0 is trivial, i.e. either e' =0 or e =0 . (Every idempotent
is either equal to zero or to omne).

EXAMPLE. Every integral domain A is connected. Otherwisé if

e' # 0 is an idempotent 1 - e' 1is also an jdempotent and e'(l -e") =03

The pfevious example shows again the well-known relationship (coming
from "old time' Algebraic Geometry) between integral domains a;a irreducibilicty.
1f an "algebraic variety' X can be decomposed
(mon trivially) as a union X = A UB of two

proper subvarieties it is possible to construct

polynomial functions £,g with f(g) vanishing

identically in A(B) but not in B(4); the product fg wvanishes in- X but

£#0, g# 0 . This "reducibility" implies the existence of divisors of
zero. In Ch.III, §5 we shall see how the old notion of irreducibility is really

a general topological notion, pa:ticularly expressive in the ZARISKI topology.

(1)
¢

Frequently called also projactors because ofbwell-known geometrical meanings.

Similarly we can ses as before that any finite decompositiom A = A, XA2 X..o X4 1s equi=-
-1 n

valant to a decomposition in mutually orthogonal idempotents & whosea sum is equal to 1.

(L =1,2,...,m) -

Conversely for any such decomposition we recover the Ai by Ai T A/A(L - e

i)

11-8-6
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. CHAPTER III

AFFINE SCHEMES

L Ch. III is independent of Ch. II. In EGA, I, Ch. I, §1 page 79

GROTHENDIECK starts Algebraic Geometry with the definition of affiné schemes

(which do not require anything from Ch. I as a logical prerequisite). Ch. I

however, provides a very good geometric motivation, starting with systems of

polynomial equations.

The most famous fact of GROTHENDIECK's work is the replacement of the
algebraic varieties by the schemes as the main subject of study of Algebraic
Geometry. The simplest types of schemes are the affine schemes. They

are building blocks of all the schemes (Cf. Vol. II, Ch. V).

Affine schemes play an analpgous role to affine algebraic varieties,
Actually GROTHENDIECK's definition was inspired by SERRE's sheaf theoretic
definition of algebraic varieties in the FAC paper. A knowledge of FAC is

not logically indispensable and to include it here would take too much

space. Since this FAC material was the main prerequisite of another Buffalo
course by GROTHENDIECK(devoted to the RIEMANN-ROCH-GROTHENDIECK theorem),I

will includgra summary of such theory at the beginning of Vol. il. !

o ee+The geometric language used previously is associated with the representable functor
I: G = Sets. (k') = VA(k’) = Homk-alg(A,k’) is the set of k' wvalued points (k' € Ob Q) .

(Cf. Ch. I). We shall now use another geometrical language, which associates to the functor E(= VA>
certain topological spaces which have an extra-structure, the so-called affine schemes, One
reason we do this is that affine schemes allow us to define more general algebraic objects, the

so-called schemes. Schemes are obtained by glugng together certain'hffiné’pieces (the

affine schemes). This process is parallel to the construction of projective algebraic varieties,
in terms of certain affine pieces (affine algebraic varieties). These projective algebraic
varieties (for instance the complex ones) refuse to be embeddable in an affine space. Besides
there are other ways of gluing together affine algebraic varieties or affine schemes. We need to
develope a process to glue these different pieces together, One of the most intuitive ways of
doing so employs the theory of sheaves. As a consequence, we are going to study topological
spaces X endowed with an additiomal structure, a sheaf Sx .

I1I-0-1
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EUW‘ARY. The functor affine algebraic space . £ over k , or equivalently the k-algebra
A which represents X (X = VA) has the serious inconvenience of not attaching to A a single

geometric object but a family of geometric objects VA(k') .varying with k' . We are going

to attach to A (and thus to %) a geometric obiect, the affine scheme (Spec A,;.).ci) We
3b.a}.} study separately the topological space X = Spec A defined_by a certain spectral topology
( f%‘; %;J {ﬁ), naturally described by the radical ideals e = Jo of A4 F(EX) is closed

: ¢9]

tff there exists a radical ideal a = ﬁ such that = €F = p =2a ". As a consequence,

Spec A = Spec(A/Nil A) . Thus one camnot recover & from X unless we can restrict ourselves
to reduced algebras, i.e. to the case NilA= 0 (i.e. zero is the only nilpotent element of A).

in order to recover A ws need to define the structure sheaf G‘{ =2 ¢f X . Then

(X,sx) gives back A because A becomes isomorphic with the k-algabra of global sections omn
X ,’i.e. with the Oth cohcmology group, A= I‘(X,SX) = HO(X;GK) . An interssting side remark

{s that k does not play any privilaged role in the construction; we only used the structure of
a commutative Ting with unit A . Thus the functor A (Spec A,4) shows that the affine

schemes (Spec A,;) attached to A can be identified with the objects o'f the category g°

f
opposite to tge catagory G of commutative rings with unit and A -+ B goes to

- £ ~
(Spec B, B) = (Spec AL4A) !

PART I

THE FUNCTOR Spec: G =X

‘SU}*_MARY. In this Part I we study the contravariant functor Spec which goes from the
category (G of commutative rings with units and unit preserving ring homomorphisms to the
category I of topological spaces and continuous maps.

The set Spec A = {p\p prime ideal of A} appeared before several
times (cf. Ch., I, page 10). Spec A has a natural topology called the spectral

topology or also the ZARISKI topology of A J—%ecause'it is a natural

intrinsic version of the topology already studied in Ch. I, §16J The map
(0.1) : Spec : Spec B = Spec A

induced by a morphism ¢: A ® B in the category G of commutative rings

with unit is continuous, thus Spec is a contravariant functor from G to

the category ¥ of topological spaces and continuous maps. l
{1) . . .
Cf, Summary of .VOL;.I . .Spec A, the Spectrum of A 1is the underlying topological space
A 1is the structure sheaf on Spec A. The couple (Spec A,A) is a locally ringed space ’
(2.) gince A 1is a sheaf of local rings over Spec A . P

Fve £
fvery element of Spec A is written with a double notation X, P according to the fact

~hat we regard 1t as a polnt x € Spec A or as a prime ideal bx C A .

III-0-2
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§1 provides the link with Ch. I (although a direct and very elemen-

tary check suffices to establish this relation.)
1. LOCI OF A. THE SPECTRUM OF A. The loci of A , were introduced in

Ch. I, §8 as equivalence classes of geometric points. The quotient set

is Spec A that can be defined directly as the set of all prime ideals
of A .
We want to make clear why the ground ring k does not play any parti-

cular role in the construction of Spec A, Max A , or even later (cf. §2)

in order to introduce the so-called spectral topology of A . TLet h: k =+ A

. £
be the structural morphism of A (h €(G) as a k-algebra. Let A =+ B be an

arbitrary morphism in G . Then ﬁ écquires'a well-defined structure as
a k-algebra just by taking f°h as structurél morphism. We are going to
assume k = Z , i.e. in the sequel we identify O with (@, .

Let A be a ring homomorphism (€ G) . Let b be any ideal of

B. Then the following properties hold.
1

The inverse image ¢ (b) 1is an ideal of 4

2)l’f b -is prime ¢-l(b) is also a prime ideal of A

3)In particular if m 'is a maximal ideal of B, @-l(m) is a prime

‘ 1 ) .
ideal of A, but @ ~(m) is mot necessarily maximal (CE£. counter-

example below).
D We leave the verification to the reader.
The property 2) implies that -Spec can be regarded as a contravariant
functor: ( - Sets, where Spec ¢ (cf. 10.1) is defined by b P @-l(b) .
Check functor properties.: We shall see in § 2 that Spec ¢ is con-

tinuous when we introduce in A and B the spectral topology, In other words:
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Spec will be regarded ag A _contravariant funetor from G to the category

T of topological sbaces and continuous maps,

COUNTER - EXAMPLE for Max(A) . Let 1: Z @ be the natural inclusiop
of Z into the field of rational numbers, Max (@) = Spec(@) = {0} 1ig a

one-point set containing just the zero ideal, i-l(O) is the zero ideal

=1
of Z ;0i “(0) € Spec(Z) , i.e. the zero ideal of z is prime o Z ig

. . : =1 .
an integral domain. But i (0) is not maximal: For any prime p > 1 ye

have the inclusion 0 < (p .

This functoriél misbehavior of A » lead GROTHENDIECK to reject
Max A as a kind of igtrinsic replacement for the various ZX(k') k' e 0bQ)
in spite of the fact that if k is an algebraically closed fiéia and ZX(k)
is embedded in k* we can establish a (1-1)-map between the ﬁ;ximal ideals

of A and the k-valued points of this affine model,

2. THE SPECTRAL TOPOLOGY.

r?ﬁe material of this § is developed in full destail in BOURBAKI's
COoe{. ALG., 1290, XXVII ch. II, Localizatiom, §3, page 124. The original exposition of
GROTHENDIECK in EGA, L, IHES has besn suppressed in EGA-Springer (Ch. I, §1, 1.1, page 194)
where only a few complementary pr&%erties are developed in full, EGA-Springer
starts with the structure sheaf.dl7p this course GROTHENDIECK considerad "first” that A is
an algebra over the ground ring k , Actually this hypothesis is not restrictive becausae evary
A can be regarded as a Z -algebra by means of the unique structural morphism Z - A .

] SUMMARY. We construct and study the properties of the contravariant functor Spee from the
category of k-algebras to the category of topological Spaces, A closed set Y of the topologi-
cal space X = Spec A can be characterized as sets of all solutions of arbitrary systams

S: (fj(u) = 0) but we need to give an intrinsic meaning to £, (u) in order to show that the

vanishing djgends only on the loci of A‘ (CE. I, §8). It is proved that S can be a radical
ideal g =,/ uniquely determined by v 2 GROTHENDIECK removed all tha older rastric-

(1)Other quick introductions (without proofs) can be found in MCDONALD, DIEUDONNE - Advances

I cf. also MUMFORD's notes. Cf. also LANG, ATIYAH-MCDONALD, The elementary approach
starting with systems of equacions given in the Introduction to EGA-Springer is not used
in the body of the bock although it appears scattered in EGA. I could not find it else-
where except in MANIN's-MT'Y notes.

( Q)TEBis agrees with the classical case (k a field, 4 a finitely generated k-algebra without
nilpoteat elements): If A ig the ring of polynomial functions of a variety Vv and W
1s a subvariety the ring of polynomial.
~functions on W , the restriction B = A|W
is defined by B = A/a. ¢ = .1 ideal of all
v : functions of v vanishing at W . Esseuntially,
this geometric consideration dictates the

choice of the COpologzj

I1I-1-3 111-2-1
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tions on A (In particular k disappears showing that all che essential properties remain.)
In o_cher words: The family of closed sets in this topology can be described completely in '
rerms of the radical ideals. As a comsequence X = Spec(A) 1is homeomorphic vith Spec (A/NL1A)
A subset Y C X is closed 1ff Y is the set of inverse images Spec(A/a) for some radical '
{deal a =.a of A by the canonical projection A = Ala . (Ch fectacle (2 o g 250,

/

Spec(d) is 2 KOLMOCOROFF space (l.e. it satisfies the To~aeparation axiom but Spec(A)
*

and (of course!) it is even less TZ (» HAUSDORFF) except in trivial cases.

is not Tl 5

%
Spec(a) is quasi-compact.( )l

For the time being Spec A is just a set:

(2.1) % = Spec A = {p|p prime ideals of A}

We are going to describe the family of closed sets of X = Spec A in

a certain topology,

Let V(8) be the subset of X defined by
(2.2) V(S) = {Set of loci of u € z(k')\fi<u> =0, ¥f, €5} i €1

where I denotes the contravariant functor C, — Sets represented by A .

% is the affine algebraic space over k represented by A

In other words

i.e. the k-algebra k' 1is a field

u: A+ k' is a geometric point of x,

(C£. Ch. I,:88).

* ) :

( )'r°-separaci‘on axiom (KOLMOGORQFF): For every pair (x,y) of points of the topological
pen neighborhood which does not contain the other, i.e.
open 3y, x £ Uy .

For both x,y as before & U, 3x, and v £ U, and

space at least one of them has an o
EUx open 3x , y&EUx or SUY
‘rl-sepsration axiom (FRECHET).
10,37, x ¢ U, (both Ux’U open). T, is equivalent to the property that every one-

point set (=] 1is closed. T, (HAUSDORFF) : I disjoint open neighborho;)ds fo,Uy

opent St: Ux n Uv =-d .

ok
( )A topological space X is guasi-compact iff any open covering X = U xi (xi’ open in
iex

X, Vi € I) contains a finite subcovering. X compact o X quasi-compact and
BAUSDORFF. The topological spaces appearing in this course will not be HAUSDORFF except

in trivial cases.

I1I-2-2
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If £ €A, u€X(k') f£(u €k' is defined by

(2.3) £(u) = u(f)

thus (2.2) makes sense, expressing that u satisfies a "system of equations"
(5 dier-

1? On the other hand (2.2) is compatible with the equivalence relation

» defining the loci of A > 1.e. it is independent of the representatives.

It depends only on the loei. In other words, if we have a k~algebra

homomorphism k' -+ k" (necessarily injective since k', k" are fields)

I, §14) then fi(u) =0 = fi(v) = 0 where v is the image of u by the induced
2 [} . . . -

map, i.e. since fv(u) = u(fv) =0 . This means that fi belongs to the

kernel of u . Let p = keru € Spec A . We see that V(S) 'is just the

set of all prime ideals containing S:

(2.4) V(S) = {x € Spec alp, > s}
Of course p :>3é (the ideal generated by S). Thus we have
(2.5) - V() = V@)

But since a prime ideal p 1s always equal to its radical: p = Jg
V() = V(HS) does not change if we replace SS by its radiecal Jgg i.,e.

we have

(2.6) V) = vy = vE )™

0

In words: The prime ideals p of A containing S are just the

* - ' ) -
¢ )I avold the notation & -for the radical Ja , becausa later i will denote the structure
sheaf,

ITI-2-3
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prime ideals containing the radical Jgg of the ideal ZS generated by S .

Now we can't go any further, because we can recover J% from V(/3)

by the formula:

(2.7) J=- 0 P
X€EVE)

(¢ because of the property that ,J 1is the intersection of all the prime

()

ideals of A containing J° 7.

Therefore we proved the following property:

The sets that can be written in the form V(S) are identical with

sets of type V(3) with g =‘45 and J is recovered from V(3) by the

formula (2.7j;

In other words we checked that the family of sets of Spec A of type

V(S) for some S , (called in the sequel algebraic subsets of X), are in

(1-1)-correspondence (reversing inclusioms) with the radical ideals of 4 ,
i.e. if Kb;ﬁ, g =./9 and 3:9 = V(?);—ZV@) .

No& we are going to see how these algebraié subsets behavé with respect
to unions énd intersections. To do this we are going to write down two
formulas”(2:8), (2.9). First
(2.8) irexlvwi): VU g) = VEg)

In other words: The intersection of an arbitrary family of algebraic

subsets of Spec(A) 1is still an algebraic subset of A .

Now, let us look for finite unioms! Then we have:

*
( )We can see this by "lifring to A" by means of the canomical map A -+ AT = B the property

that RilB= {set of all nilpotent elements of B} = intersectionm of all prime ideals of B .

I1I-2-4
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2.9 V(T g) = U v(g )
l<gi<n 1<isn

(2.8) is quite evident.(2.9) can be proved as follows: First the embedding

I 3, < g, 1leads to the opposite inclusions V(I 2;) DV(g,) , for every i
i<i<n . o ' 1<izn

(2.10) . o v(ng)y > U vEg)
: 1<isn ISLSn

Conversely we want to prove that  x, € V(I J)  implies x € V(gi)
' ‘ o ‘ Jlgisn

for some i . Otherwise if p12¢ g, for 1=1,2,...,n there exists
£, € g, with £ £ p, - However £ f,...f €p  in contradiction with the

fact that px is prime.

- Obviously, we have

(2.11) L =T X = V(0) = V(Nila)

- This, together with the previous remarks, tells usthat the family of

sets defined by V(&) @ = JU) contains d and X 7and it is stable by

arbltrary 1ntersect10ns and by arbltrary flnlte unions. In other words:

The family V() = Vﬂ'radlcalrideal of A) satisfies the axioms

for closed sets for a toﬁology on X = Spec A . This topology is called

the spectral or ZARISKI topology of X = Spec A . This notation will denote

in the dequel, the corresponding topological space.

Let us prove now that X is quasi-comb&tt 1 in other words we want

to prove that 1f X = U (Ui open, Vi € I, I arbitrary), there
ier *

exists a finite subfamily covering X . WNow in terms of closed sets, this

property is equivalent to the fact that if (Yf)iEI is an arbitrary

71 .
* )Cf. definition in the footnote of page MW-2-2.
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family of closed sets with ag empty intersection: -ﬂ Yi = ¢ there exists
a finite subfamily whose intersection is empty alrci?j. Let 91 be ideals
of A, such that v = V(g;) - The sum Z #; =2 of these ideals repre-
sent ¢ , 1.e. V(P = empty. This is equivalent to the fact that g is
not contained in any prime ideal whatever! Then by KRULL's theorem

(which says that any non-zero ring with unit contains at least one maximal

ideal and a fortiori a prime ideal) applied to A/g we see that 7 is

contained in some prime ideal unless 2 = A . 1In other words
(2.12) VP =¢ge=F=A

So L 91 = A , as a consequence we can write 1 = ié;fi fi € 91
with finitely many fi # 0 , which implies that A 1is the sum of finitely

many g, , i.e. the intersection of finitely many Y is empty!
i
Let us look at the closure {;§ of the one point set {x} of X, f;?

ig the smallest closed subset of X containing x . Let Y =7V() . To

say that Y contains x is equivalent to saying that 3 Clgx. Thus the
smallest closed set containing 'x ,corresponds to the maximal 3 contained

in p which is p itself. As a consequence we have’

(2.13) y € {X—}“PYDPX

Therefore the specialization relation(l): y € {;7 corresponds to the reverse

inclusion relation for prime ideals.

L.

COROLLARIES. The one point set {x} is-closed if the prime ideal p_ = is

maximal.

& Let x,y be two polnts of any topological space X . We say that y 1is a specialization
of x iff y € {;} . Cf. next §3. Of course in any T, space, in particular in
HAUSDORFF spaces, y 1is a specialization of x =2y = x , L.e. the notion becomes triviall

I11-2-6
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2)

X 1is a Tl—space (® every point of X 1is closed) iff every prime

ideal of X 1is maximal.

We can show plenty of examples of rings A with nonmaximal prime
ideals, thus X is not necessarily a separated space! We shall verify

shortly the To—axiom . r_Ef. footnote (*) in III-Z:EJ.

r~if y € {x}, every closed set of X containing x contains also

y which is equivalent to: every open neighborhood of y € {x} contains

also x .

A point g of an irreducible subset Y of a topological space X is

called a generic point of Y iff either one of these two equivalent

properties hold:

1) Y = {g} ® every closed set of X containing g contains'also vy,

.

iy €Y

2) For every y € Y, any open neighborhood of vy contains <x;

2) can be rephrased also as follows: every non-empty open set of

Y contains the generic point g .

Now we can prove that Spec A is a T0~space . Let x,y be two different
points of Spec A . Let us assume that every open neighborhood of y
contains x(@-py D px) . Then pxi$ py (otherwise x =y). Thus

% $ {y} ® some open neighborhood of x does not contain ¥, q.e.d.

(*)
3. THE CANONTCAL BASIS 8 OF O0p(X) .

The classical fact that any ZARISKI closed set (old time informal "affine variety™:
(cf. I, §14) is the Intersection of ”hypersurfaces"é £(x) = 0 has a natural analogon in

Spec A (f(x) =0 = fep ) . The dual property can be expressed by saying that the family

*

The blackboard notation for the category of open sets and inclusions in a topoiogical space

X was 8§ =8(X) which.is too close to sx (the structuras sheaf)., I replace it here by

Op = Op(X) _for opea as a translation of his Ouv. for "ouvert',
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- {X } : or open sets defined by (3.1) is a natural or canonical basis for the topology>
f fifeA .
of Sp2c A. B is stable for finite intersections. If £ 1is not nilpoteat Xf is the

complement of a proper "hypersurface" Ve = {x ¢ Spec AlE(x) = 0} as in the classfcal case.
If £ is nilpotent Xf =¢ . 8 1s a natural example of a "site" (GROTHENDIECK topﬁlogy),
{.e. a topology with covering data in wﬁich sheaves can be defined; of footnotes in pages
100 and 101 . Some functorial properties needed in Part II in order to define the. structure
sheaf of Spec A are established here to avoid a later lengtﬁy digression. They can be left

for a second reading.

The definition of a closed set F on X as F =V(S) (ST A) is
equivalent to the fact that every closed set F 1is the intersection of

closed sets of type V(f) (£€4), defined by
(3.1) V(f) = {p€Spec Al£€p} = {p €Spec A|£(p) = 0}

Precisely:

(3.2) F=vV(S) »F = V()
£€s

Particular important cases of the closed sets V(£f) are
(3.3) B V(1) =9 V(0) =X
More precisely, we have:

Xe £€p, Vp € Spec A » £ENilA

(3.4) - V(D)

I

In other words V(f) X iff £ is nilpotent.

By topological duality we get the following property:

Every open set U of X is the union of open sets of type Xf, where

(3.5) X=X -9 = {p € spec alf &)}
Precisely
(3.6) F=X-U=V() = Q V() U= U X,
f€s fes
The family {Xf}fEA is called the canonical basis of the Spectral

topology on X . It will play an important role in the construction of

=i
!
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the structure sheat in Part II.

The canonical basis is stable by finite intersections, precisely-

(3.7) ng = Xg N xg V(f,g) €A XA

The inclusion relations between basic open sets can be interpreted in

terms of commutative algebra, for instance:

Xf X implies the existence of a.positive integer n and an element

h of A - such that

(3.8) g" = hf

Proof. X, G X V(£) DV(g) = V(fA) = V(/EA ) = V(g) = (3.8). In

particular two elements f,g of A define the same basic open sets: Xf-X

g

iff there exist two integers m > 0, n > 0 such that fHIGAg, gnngf .

rl_rx fact, the reason why we want to emphasize this canonical basis £ = {xf}fEA is ‘that the

exactness properties charactarizing the sheaves on X as particular cases of presheaves can

be expressed in terms of commutative algebra. To make this more expliciz I report GROTHENDIECK's
talk, following the tape_ at th:‘ﬁ_§ to avoid too mar}y heavy disgressiouns in the comstruction

of the structure sheaf A (Cf. W, Part IT, §6>7) ,w-s' N

... Before discussing the structure sheaf of rings A in Spec A

Cf. Part II of Ch. III T will give the general description of sheaves on the

spectrum by using the previous remark that the open sets of type Xf € 0b R
(£€A) from a basis of the tppology stable by finite intersections. Now
I recall again that to give a sheaf of sets on an arbitrary topologiéal

space X 1is the same as to define a presheaf satisfying certain exactness

conditions; first of all let us-recall that for any topological space X

we can construct the category Op(X) (cf. footnote (*) of page 795)'

whose objects are the open sets of O0p(X) . The set Hom(U,V) of

morphisms for two open sets of Op(X) is either empty iff UV

. . . . ,u . . .
or it consists of a unique morphism i_: u - V (the canonical inclusion).
. v
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A presheaf P on X with values in a category C 1is a contravariant

functor P: (Op(X))o -+ C . GROTHENDIECK is particularly interested in

considering mow the case that C 1is the category of Sets.]

...A shesf of sets F on X 1is a presheaf which associates to every

open set U of X a set F(U) and whenever U 1is covered by open sets

M

U.: (1
i

I

(3.9 u= U U

if we look at the intersections Ui NU, (1,7 € I) by teking F(U) to the

J

Y c 1 . : u ™ : 1 o 3
product of the restrictions o4 Flu) - :(u;) an this to the twofold
s i
product corresponding to the two inclusions of Ui N Uj in Ui or U,
. J

we obtain an exact sequence

(3.10) FW) » TF@U) 3 0FE, N Uj><1>

2 ice I l)_]

In other words: To say that the presheaf F 1is a sheaf is equivalent

L

to say that (3.10) is exact for every choice of the covering (3.9) of

and for evéry U . Now let us come back to the case X = Spec A . Since

8 is a basis stable for intersectionms (cf. (3.7));1: suffices to rephrase

the previous general considerations by maps Xf'H F(Xf) (f € A, Xf £ R)

and whenever Xf is covered by open sets X_ -(fi € A):
“i

(3.11) X.= U X (£,£, €4,1i€D

Ct)Exactness means of course that the image of the single arrow is identical with the karnel

of the double arrow. In the category of sets, ker{u,v), whers A 5 B 1is a double arrow
1s deftned Wy ' M
ker(u,v) = {a € Afu(a) = v(a)}
"In gemeral categories the definition is reduced to the set theoretic case, using mor hisms,
instead of points of objects.

ITI-3-4
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if we lock at the intersections X, 0N X (i, € I) by taking F(,.) to
fi fj 4 {

the product of the restrictions and this to the twofold product correspounding

to the two inclusions of Xf n Xf in Xf or Xf we obtain a diagram
i J i J
T2 A . - T (;
(3.12) F(uf) -+ 'EI F(Xf.) 3 'H' (Kf.f‘)
icl 1 1, i7]

which is exact in an obvious way.
In terms of commutative algebra we shall simplify our notations by

calling G the '"shea{" that we want to describe by writing
(2.13) G(f) = F(Xf) Vi €A

Thus to cvery element f of the ring A we shall associate a sel

- (1 . . . ; -
G(r)‘.> We shall give certain data to this collection of sets {G'(r)_}f,_:x

. P . . , . W "
and the conditions needed on this data in order to define a sheaf G .

Fuplicitly we have the conditions:

b) For every pair a, b € A such that X, <X I want to defiine a

restriction map:

. G(eo .
pe: G(g) = G(D)
We have to interpret in terms of commutative algebra what means that

Xf C X_ . We saw already (cf. p. 97) that Xf T X is aquivalent to the
(&3 o

existence of a2 positive integer n and an h £ A such that (3.8) holds!

In other words Xf <X, can be expressed in terms of the divisibility
o

relatiocn on the ring A. Moreover we have transitivity, i.e.: X. CX & Xl
L 3)

imply that the diagram of inclusions:

¢y} .
Or G{f) <ill be a group, 2 ring, an A-module, etc., according te the category on which G
takcs values. In the text F(f) continues to be a pure sst.
I11-3-5
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Gh) = G(g)

(3.14) t\\\\& ;

G(£)

is commutative. So we have a "presheaf in the category of basic open sets

Xf” which can be interpreted as a presheaf in the category A Fﬁf. next

€y
digression on ”sitegﬂj whose category structure comes from the preorder

relation of divisibility.

The presheaves themselves would mnot have much topological significance
so we need to introduce the exactness properties writing down the exactness
conditions (3.14) in terms of commutative algebra:

Precisely:

For every VE € A and elements fi €A (i £€1) such that

X. = Y X, I want that the diagram
f c £

(3.15) - G(e) » 1 6(£) 3 mG(E £
i€l i,] J

defined as before, in terms of the restriction morphisms, should be exact
for every “f and for every open covering, i.e. we should be able to identify

G(f) with the subset of the product I G(f ) comsisting of all the elements
iel

whose images by the two arrows are the same.

Now in order to interpret in terms of commutative algebra we have:

a) ) .
For every X c Xe which means, I recall #n, 2 o,h, €A s.t.
. 1 1
1 .
£.7 = fhi i.e. u. X_ = Xf & fi = fh, 1i€1
L
€1 £
‘I will formalize this oral exposition _
F: Op(X) —+ Sets was defined in the category of open sats of X . '
G: G -+ Sers is defined in G . However it makes sense £o say that G is a contravariant
functor (G - Sets because the divisibility relation g{f «dnz0, h €a, s.t, £ o= hg
defines 2 categorical structure in A where Hom (g,f) = ¢ 1ff g { f and there is a
unique morphism (preorder relation) Liff g {_J

6))

IZ1-3-5
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b) - We need to express the converse property: Xf < U Xf . This
i€l i
means that V(f) D ﬂV(fi) which means also V(fA) D ﬂV(fiA) . This
implies an inclusion between the radical ideals JEZ , L fiA
(3.16) V(/EA ) DV(/ T £, A
. i
i€A
which means that there is an integer n = 0 and finitely many elements

g4 € A such that
T n_
(3f17) £ z gifi

Now we have interpreted everything in terms of commutative algebra!
In fact we have reconstructed the "site" of the open sets of type . X in

(1)

terms of commutative algebra.

Another important property of the canonical bases needed later is their
functoriality. We shall prove it in 34. -
4. THE FUNCTOR Spec. In the previous §1,2,3 we assumed X = Spec A to

be fixed. Let us check now that to any morphism

(4.1) u: A’ B

in the category (G of commutative rings with units corresponds a-continuous map
(4.2) Spec u: Spec B & Spec A

between the spectra (in reverse order). We know already how to define the

(L)

Qur friend ongot that not everybody followed his course in Topoi (which is not necessary to
understand this course) but he added a very short explanation .

7" . s s .
A site iy just a catepory plus coverine data,"

A Site is the same e INDIEGK "ood
h Sife ts the x; a% a CsOTHLKLIuCA.EOPOIOQY » L.e. a category where fibered products
X , fich the essential properties of coverings makes sense, just replacing inter-

sections U; MUy dn X by Ujx, Uy . Cf. Ch. T1, §1.2 for the formal definition of fibre

products. For "GROTHENDIECK's topologies"” the quick i i L
du : S K g he quickest short development is given i
DIEUDOMNNE, Advances 1I, Page 407-11, - y ’
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: -1
map between the underlying sets b+ u (b) . We need to verify just the

EQEEEEBEEX_9§_§E§E—3' Let V(S) be a closed set of Spec A (S C 4)

’ -1 . .
The condition: (Spec u)(b) =u (b) € V(8) 1is equivalent to

u-l(b) 5g = p=u(S8) = b€V, i.e. the inverse image of the
closed set V(S) of Spec A by Specu is V(u(S)) which is closed in

Spec B .

The induced map Spec u 1is a continuous map.

Spec is & contravariant functor from the category (G of commutative

rings with unit and unit preserving ring homomorphisms to the category of

topological spaces and continuous maps.

As particular cases of (&.1) let ué consider the surjective canonical
homomorphism A g A/a (o ideal of A) defined by aw a + a . Then
Spec u: Spec(A/a) — Spec A is a canonical injection of the spectra.

If o = Nil A 1is the Nilradical of A , the bijection between the
underlying sets Spec A and Spe;(A/Nil A) defined by p P p/Nil A .is a

homeomorphism between both topological spaces:

(4.3) ? Spec A 3 Speé(A/NilA)

This ﬁroperty alone makes clear that we cannot recover A from Spec A .
The case that A is a field is even more expressive: the spectrum of any
field k is a ome-point space corresponding to the unique ideal (0) of

k: Spec k = {(0)} .

Now we can prove that the continuous map (4.2) induced by (4;1) maps
the basic open sets of Y (cf. §3) in those of X . Im fact the inverse
image @-l(Yf) of the open set Yf (fF €A) 1is open in X . We shall prove

the functoriality:

I72-42
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(. 6) @_1(ﬁY) = ﬁK (ﬁx 3 canonical bases of Op(X),0p(¥)) .

in the beautiful sharper form

1

b

(4.5 0 1) = Xy

for every Yf € ﬁy , Y£ € A . Let us come back to the simplified notations

of §3 used by GROTHENDIECK in his lectures, instead of the functorial ones

]

uscd in this -X = Spec B, Y = Spec A, © = Spec u

[Ze ]

4, 1i.e. we write again

u
in such a way that Spec transforms A - B into Y « X . Let Yf € EY be

any basic open set of Y corresponding to any element £ £ A . We have

[o € Spec A€ €p} = ¢ (v,) = (@ € spec Blo) € v} =

N
i~
o,
~
<
il

- -1 .
{q € spec Blu l(q) € Yf} = {q € spec 3]f £ u "(q)} =

it

i

{q & Spec B\(f) % q} = Xu(f) .

Y is mapped naturallvy

q.e.d. In oﬁherwords: The canonical basis ﬁy of Y

by © in the canonical basis ﬁX of X in such a way that (4.5) holds.

In order to recover A we shall define in Part II the structure sheaf

A on Spec A ; in such a way that T (Spec A,K) = A . Then we shall see

how these sheaves in the category $ play a fundamental role.

5. DIGRESSION ON POINT SET TOPOLOGY APPLICABLE TO SPEC A . EXAMPLES.

There are several imporzant, purely

topological notions of old time algebraic geometry which ars meaningful for arbictrary topological

spaces, They are applied here to the highly non-HAUSDORFF spaces of algebraic geometry:
algebraic vatiecies, schemes...etc., via the ZARISKI topology. They are not usually hzndled
in courses on point-set topology because they beccme rrivial in separated spaces, which are
regavded as the "natural ocnes". The Tg,T; spaces needed here are neglected since they are

i) :

dpa;ho;oglcaln... The fact that they play so big a role in algebraic geometry makes it highly
esirable to overcome this bias since the algebraic geometric objects are very natural and
important objects of study. The typical cases treated below by GROTHENDIECK are srreducibility,

generic D?‘“f (already mentioned before), snscializacion, sober spaces, etc. For—E;;EEE;—_———‘
etails cf. =G4, Springer, Ch. 0, §2, page 48.

¥
GROTHFMDIECK's SIMMARY: I ap going to prove now that the Spectrum X = Spec A 13 a sober

III-4-3 I11-5-1
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*
space, i.e. for every closed irreduzible subspace Y of X there exists a peint y €y
B 7y . . P :
uch that Y = {y ording to previous definitions aund remarks evory closed frreducibie
e generic peint. In other words, there exists a (l-l)-correspS;E:;ﬁc

, L.e. ace
o

5

?
J
subspace has one and ounly

« - {x} between the set of points of X and the family of closed irreducible subspaces of X
A topological space X 1is called irreducible iff X 1is non empty

and 1t caunuot be decomposed as the union of two'closed sets both different

from X :

i
X =X
AN = ! 1 | ) oo Nt
(5.1) X#¢, x=x"Ux", x'=Xx', x'=X" = or
L -
X X
. Irreducibility is not quite the same as the connecteadnass property, beczuse wa
ume X' X" = ¢! In other words, avarv irred -

~
Leok for imstance a2  the union of two intarsac
A UB is comnected but it is not irrcduciblcw

>

A subspace Y of X is irreducible iff YCAUB (A and B closed

in X) implies that Y 1is contained in A or YCB . As a consequence

YT X 1is irreducible iff its closure Y is irreducible; in other words

L

irreducibility is stable under closure. A one-point set {x} CX is irre-

ducible for any X ; we saw already that {x} 1is not necessarily closed

in Spec A , in other words Spec A4 is not necessarily a Tl-saace, i.e,

.

we need to consider the possibility that {x} will be larger than {x]}

(and often "much larger" cf. Examples at the end of §5). ©EBecause of the

previous remark we have: The closure {x} of a one-point set is always

irreducible. Conversely, let V be an irreducible subspace of X . Any

point x € V -such that V = {x} is called a generic point of Vv (Cf. §3

~ L

for the particular case of Spec A).

If vy € {x] every closed set F containing x contains also ¥ &

v given by (S5.1). This definition is the

finition of irvecucibility g :
rs'. The 'mew' fact is that this old definition can be .can be inter-
?

a s
olegical neticn applied to the ZARISKI topology.

sage used by "old ti
preted as a general Lo

(*)r‘ the topolegical d
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Every open neighborhood of v contains x . If X is a To—space (KOLMOGOROF S

space) cvery irreducible subspace of V contains at most one generic point
(because if {i} = {y} =V and x # y every open ncighborhood of x(y) contains

v(x) agains the To—property. (CE. (%) of page (90)). We say that y 1is a

(%) .

[

specialization of x (¢ x a generization of y) 1ff y

A topological space 1s called sober iff every irreducible subspace Y
of X has a generic point. If ¥ 4is T and sober cvery irreducible
o]

subspace of X contains one and only one generic point. In other words:

In a TO sober space X there is a bijective map ¥ -:gi} between

W

the points of ¥ and the set of irreducible subsets of X . 1IFf »f: X3 Y

is a continucus map and the source X 1is irreducible, then the image subset
£(X) on the target space is also irreducible.
1

kg e - - . . 2 H
For separated spaces irreducibility is not too interesting! A

separated space X is irreducible iff X contains just one point!

[;; fact the set-théoretic dual of the definitlon property (5.1) is: Any two nop-amoty apan
1 . P -
S (cf. I, Q14):

Sets of ¥ infarsact
A,B both opun and Af ¢, BF g » ANE# 4 : .

4s 2 consequencr an Irreducible space rontaining two non empty open sets canuot be Hiusdovff:
Jf. P,0 are two different points of HausdorTf space there exist two digjoiun op=n nalghbor-
“heocds 0f P,Q thus X caunot be irreducible. -

In Algebraic Géometry; of course, the situation is entirely different!
For instance for a classical affine algebraic variety X, X 1is irreducible
iff the ring o% polynomial on X is an integral domain,

The application of these notions to Spec A (A€0b @) endowed with its
spectral topology (cf. §2) is immediate.

If X 41is the Spectrum of 3 ring A€0bQ, we want to see what means

i PP P cres ; S
¢ )This property can be taken also as a definition of irreducibility. Other equivalen: conditions are:

iy

Every non-emptv opben set A C X 1is dense {n X : A =X . )
Z)Every open subspace of X is cornccted. Wa leave the easy verification to the reader.
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that X 1is irreducible. First let us remark that the spectrum of A
doesn't change if we replace A by A/NilA ; because every prime ideal
contains NilA and the map p v p/NilA (¥ € Spec A) |, (which is a bi-

jection between Spec A and Specc A/NilA), bpreserves the topology.

As a consequence, in order to check irreducibility we can assume that

A is a reduced ring. Let us verify the two irreducibility conditions

separately. That X = Spec A 1s non empty means A # 0 ; because X = ¢

means that A has no prime ideals and by KRULL's theorem A =0 . VYNow
let us assume X = X' U X" (X',X" closed subspaces of X). X,X' and X"

corresponds to radical ideals ¢,2'" and the union corresponds to the

1 i

product §°2" , i.e.

X' =V, X =V =g

This latter property means J2'3" =0 , i.e. 2'9" is the zero ideal and
there is a (f-l)~map between closed sets of X and radical ideais of A .
Because of our assumption that A 1is reduced, the zero ideal is a radical
ideal. Then}the irreducibility property is equivalent to g'g” =0 ., This

property is true iff A has no zero divisors. Im other words (for a

~reduced A)  X = Spec A is irreducible iff A is an intesral domain. In

general, we have:

X irreducible e A/Nil A is an integral domain,

We know that any closed subspace of Spec A can be identified with Spec A/q
where o 1is a radical ideal of A. We have: the closed subspace
V = Spec A/a of Spec A 1is irreducible iff o is prime. Then ¢ is

2 generic point of Spec A .

I1I-5-4

e T T ptmmren e s



~107-

Every irreducible closed sot of Spec A has @ unique gencric soior.

Ihe existence was just proved! The uniqueness is a conscquence of the

Iod 2

1o-pro;vrty of Spec A (if an irreducible Y of 2 T sobev space contajne

~ ~ 1

ot e - . !
two differenl genevic peints y, y' every open ncighborbiood of ong of then

should contain the other, iun contradiction with T !
o

The topolozical space Spec A is 7T and sobor.
2 o 298

We alrecady saw the proof: 1if every open U containing x also contains
# u then every closcd coutaining x also contains y « p_ D2p
o 3 r
Then cannot p_ D Dy otherwise be x =y . Thus Spcc A s TO . On the
< .

other haud Spec A/a (a radical ideal of A) is irreducible if g = 3

]
[
bd
¢}
=
o]
~
<
o
v
-+
™
w
-
o
[#]
O
s}
-
<

is prime and we already saw that ) is gene

onc because Spec A 1is TO

Any irreducible subspace I of a topological space is contained in a
maximal one (which 1s necessarily closed) becazuse the family of irreducible

subspaces D1 1is partially ordered by D and it is inductive (= every

[«

. 1 - oyl
totally ordered subset is bounded). Then as a censequence of ZORN's lemma
there exist maximal elements. As a cousequence we have:

. ) (1) .
Any topological space X can be decomposad as an irredundant union

of irreducible closed subspaces:

(5.2) X= U I (I. irreducible, ¥v € J)
BRY) A%
vEJ

This decomposition in irreducible components I is unique (up to the
Y
ordering).
In classical algebraic Geometry the set of irreducible components was

finite because the rings A were Noetherian (g¢f. Ch. 11, ). More

(I)Irredundanc means: every Iv {s not ceatalned in g .

BEEV

I11-5-5
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generally we can prove the finiteness of (5.2) if X 1is Noetherian (cf.
def. below):

A topological space X is called Noetharian iff anyone of these equi-~
valent conditions hold:

1) Descending chain condition for closed subspaces (in its two equi-

forms):
DX, D ... is stationary X, =X, Vi
Xy 5 is stationary (X, ;)
X, 2 X, 2 ... 1is finite
1 %72 %
1) ' Ascending chain condition . -pen sets Ui
Ul c U, © ... stationary Ui open for every i
. U oo finite U, open for ever i
UL %ﬁ 5 %ﬁ e 5 p £ very 1

If A is Noetherian Spec A is Noetherian also. . GROTHENDIECK shows in

that the couverse property i1s not true.

tely many minimal ideals of a Noethevrian

1)

Accordingly therc are fin
ring A . They are the gencric points of the irreducible components of
Spec A .-

The prqof of the finiteness of the dgcomposition in irreducible
componenté cgn be done by ''Néetherian induction' as follows:

Let 'X be a Noetherian topological space. If X 1is irreducible
there is nothing to prove. If X = X' U X" and the finiteness property
is false for X 1t should be false also for at least one of the closed
subsets X',X'"" of a non trivial decomposition X = X' U X" . Then
X'=Xx"y Xé with Xi,Xé closed and # X' . Let us assume that the
is false for Xi,... Then we construct an infinite strictly descending

chain of closed sets: X D X' DX/ D ... against the "Noetherianity".

ITI-5-6
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EXAMPLES. I want to prescnt two kinds of examples:

1 Thosc coming from a classical affine algebraic variety V (not

jot)
w

necessarily irreducible) over the complex number field. V will appecar
the subspace of closed points of Spec A(V) where A(V) 1s the ring of
Y-valued polynomial functions f: V - T defined on V .

laron.,

o
2 Examples which have no classical ana

It is clear that examples of the first type can be particularly useful
for the readers with some background in Classical (or "old time") aigebraic
geometry., But since I worry about ”appﬁicability”, I cannot balieve that
a non oxpert in classical Algebraic Geometry is ignorant of liges) planes,
algebraic curves, surfaces in T . I cannol bazlieve that chcureadel naver
heard of the conic sections (is it fair to assume that the readér never
heard of KEPLER laws in this age of space explovation?)... . However,
restricting ourselves exclusively to spectra coming from classical varieties
would not be in the best interest of the reader. Such a restriction could
léad to the false idea that all Spectra comz from algebraic varieties...

Since tﬁe topological_spaces Spec A and 'Speé A/Nil A are homeo-
morphic we can assume that all the commutative rings with units mentioned

in the vest of this ssction are reduced (» Nil A = 0) .

4

'NE ALGEBRAIC VARIETIES.

-

1 SPECTRA COMING FROM COMPLEX AFF

A reduced ring A of type A = E[gl,gz,...,gn} , i.e. a finitely
0

generated T-algebra without nilpotent elements (# 0) , represents an affine
algebraic variety V . Since A 1is Noetherian V can be decomposed as an

irredundant union of finitely many irreducible components 11,17,..., h

v = Il U 12 ... U Ih

I1I-5-7
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The points of V are the maximal ideals of A: V = Max A . The irreducibl.
components Iv (v =1,2,...,h) correspond bijectively to the (finitely

many.) minimal ideals of A: pl,yz,...,ph and Iv can be identified with

-

the maximal spectrum Max A/uv (v = 1,2,...,h) . A/yv is an integral

domain. Its field of quotients has a finite transcendance degree aver

&

~

L , equal by definiticn to the complex dimension of I . A chojice of a
v

finite set of generators for A , for instance gj (j = 1,2,...,n) enables
us to define a surjective homomorphism E[Tl;Tz,...,Tn] A T P
- J J
. " . o ‘. n .
j =1,...,h) which provides an affine embedding V =+ T ... . but let us

stress conce again that the embedding itself is not importaunt. For a given

A n might be variable (n > Max dim A/yv v o= 1,2,...,h) .

1 !

The enlargement Max A - Spec A might add to V '"many more" "thicker'

points: ore precisely, one for every irreducible subvariety I of V

. . P . . B .
(with pI # pj if I #J . I.e. there is one point pv = pI v=12,...,h

for each irreducible componsnt. Every x € Spec A i generic for thes
subschem Alv consisting of all the points of Spec A representing
"X

irreducible subvarieties of the irreducible variety V represented by x ,

i.e. y € {x} is equivalent to Vyc4 VX - In particular for the p

) . . . v ’ . , N
b € Spec A is the generic point of {pvg wnose points represent all the
v

irreducible subvarieties of V contained in the v-th irreducible componant

I, (v =1,2,...,h) .
In classical algebraic geometry irreducible varieties played a privilege

~ .
role... Let us examinas in particular the cases of an irreducible affine

3

curve T', an irreducible affine surface S and the affine space €~ .

Let A(T), A(s), A(€3\ be the corresponding T-algebras of T-valued

/

III-5-8
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polynomial functions. We have:
a . . . .
) Spec A(T") contains T plus the generic point (= zero ideal of A(T")).
(0) € Spec A(I") Dbecause A(T') 1is an integral domain.
by : ¢ or
Spec A(S) contains S (¢ set of all
A
the maximal ideals of A(S)) plus all
the points representing irreducible
curves lying on S , plus the generic
point of S (= (0) € Spec A(S))
3 . -
Spec A(E7) contains (besidas the closad
. - 3 T
points of 3-space ) the points repre-
senting all the irreducible curves, those

representing all the irreducible surfaces

. . i 3
and the generic point (0) € Spec A(T7)...
Forgetting about L , if k is any commutative field, Spec k contains

just one point (which is generic for Spec k). Thus once again there is

no way of recovering k from Spec k...!

<

2 SPEC Z AND Spec & (6 LOCAL RING):
Since Z is the initial object of G let us consider Spec Z . We
have (0) € Spec Z ({(0) is prime e Z 1is an intégral domain). (0)

is the generic point of Spac Z . Any other point # (0) of Spec @ has

the form {p) where p 1is any prime number: p = 2,3,5,7,10,..... . Any
such (p) 1s a maximal ideal, i.e. Max Z = {(p)‘p prime} . Thus every

(p) is a closed point.

Our last example will be the spectrum, Spec A , of a local ring with
maximal ideal m . These rings were considered in classical algebraic

geometry even though they are not of the type E[gl,gz,...,gn] . Thus,
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Spec A 1s extremcly‘different from Spec E[gl,...,in] (except in the
¢trivial case). 1In fact: Spcc A contains just one closed point m Any
other point p € Spcc A 1is a generalization of m (2 mE¢& {p}) . In
classical algebraic geometry if Y 1is an irreducible subvariety of the
complex irreducible algebraic variety X , the localization of A(X) with
respect to the prime ideal py (cf. §8) is a local ring A? ; the points
correspond bijectively to all of the irreducible subvarieties

of Spec A
p fy

73 YCZCX.
HISTORICAL EVOLUTION OF GENERICITY

During the Italx:n pericd a property P of an irreducible (affines or projective) algehraic
variety X w=s "trus for the gereric point' Lff P _is false for a proper subvariety Y C I,
In today language this is equivalent to say that P 1is false in a ZARISKI closad set of X
(o P 1s true in a ZARISKI open set). for instance the statemeni: thera is just ona line containing
a generic ordered pair of points in the plame X means that the prepecty is false oaly fer the
(x,y) diagonal [x‘~x[x € X) which is a ZA2ISKI closed subsat of. XxX.,ZThis conventional i:;uage
is parallael to the properties "valid almosc everywhere™ o (except for a sat of measure zero...)

in real analysis... .
’ '

- - - a
VAN DR 1 yees, 3 for any XSk (k gzround
o 1 - . - .
field) as a ', Burithe caaracteristic properzy
- ‘) -
is (g) €Q X Lff ™ME(z) =0 for any f
vzaishing ide £(Z) =0 = £{x) =0 ., The purposa
of this allzz ne previous Ttallan asticu (where an "azzesi"
szusl
gezaeTic point g uses che coordinates; it is aot uaigue
‘ .
CBCTHENDIZICN s o every zr:a:u:lea subsec of Spec A and
this point is ed) , x (generic point of X defined ia the

text by X = |x} Iis then a purely topological notion. Because of the definition of tha ZARISED

tOrOLv.’s:" it is 5'-}-" It true that f(x) =0 = -(Y) =0 for acy specializatison y{(% L3 )'), s ia
¥ FAS X as L
V'é...: D._.. "‘.‘.“‘._AJJ:,;". ’

SHEAVES ON AFFINE SCHIMES

6.. INTRODUCTION.

The maic groperties of shaaves of atelian groups, rings, etc. on the category of

-topological spaces are supposed fo be imown (cf. PREREQUISITES, page €). I believe that the

standard Sibles: CODIMENT, the complements {n ECA are too exteasive for a beginner, They acte

refarence bonks. The main reasounzble short introduccion with full proofs Ls SERRZ's FAC

paper; (HIRIIBRUCH's sketchy iztroduczion, or tha excended one fa GUINING-ROSSI, ... are also

reasonably "short"...). A short introduction on sheaves of sets is provided in the Appendix (414).

IIT1-5-10Q III-6-1
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- - — ——— -_v_I )

The main result of this Part II of Ch. IT1° is the fact that the structure sheaf dofined
on Spec A in terms of the localizations Ap (p €Spec A) transforms Spcc A into a

loczlly riugad space (cf. I, 4Q, page 5) (Spec 4, A) and A becomes the ring of global

sections of A, thus we recover A&, froa the affine scheme attached to A .
The category Aff of affine schemes is a full subcategory of the category of lecally

. = A . . . °
ringed spaces. Aff is isomorphic with the opposite category C° of the category (@ of

mmutative rings with unit.

The topological structure on X (¢ on 2) 1is only a small part of the structure ncaded

: - v g . 1 . .
on X, in order to recover A . In fact, X 1is a ringed saace( ). We are going to

construct a covariant functor: Aff -+ frs which goes from the category Af{f of affine

(2)

algebraic spaces to the catezsty of lecazlly ringed sopaces, or equivalently a contravariant

functor fron the ooccosite category € of commutative rings with units to frs .

m

Now I will define this extra structure that I promised, namely I will define a sheaf o

rings GX = A on the spectrum of A, called the structure sheaf of X .

{;Treader with the elementary sophisticztion of sheaf theory given in FAC can readily
vnderstend the construction as follows:
The stalk KP of A at a point p €Spec A is the direct limit
(6.1) A = 1liod
- U
i Ueob 8
of the lccalized rings(B) AU of A where U runs in the category £ of basic oben sets
. Z
of Spec & (cf.Ch. 111193)<4). (AU is the largest homomorphic image of & (SU: A= AU)

characterized by the universazl property that if U = Xf SU(f) is iavertible in AUi;J

1 - , - .
( )Cf. def. in footnote (8), page 0-4 of the Iatroduction. Cf. E
Espaces aanelds, page 87. We shall define the morphisms .in §

2 . ! ;
( )An object of £rs 1is a ringed space (X,SX), vhose structure sheaf GX is & sheaf of
local rings, i.e. for every x€X the stalk at x, GX < is a local ring. Morphisms in
b
Lrs will be defined accordingly in §7 .

(3)It is clear that the reader should be awvare of the th=ory of localizatioa (which is standard
equipment in many graduate algedbra courses, cf. for instance LANG or ATIYAH-MCIDOMALD and
BOURBAKI-CO{-ALC, for full details). The main definitions were reviewed by GROTHENDIECK
wvhen needsd. I have collacted them in 88 .

(4

der. §3 .
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The rings of continuous scctions of A over 2 basic open set U {s isomorphic with

. 1 -
AU LI U =X, AU is {somorphic with Af( ) , 1in other words any fraction a/s of
AU can be written in the form a/fn for any generator of U . 1In particuler, for
£ =1, Xl = X = Al = A, i.e. we recover A as the tring of global continuous sections of

the structure sheaf A over X .

REMARK. In the FAC approach sheaves can be definnd inde-
pendently of preshcaves, by using sralks from the very
beginning. This_ justifies this agricultural teruwinolegy for
the "fibers” p"*x in 21l languazes (falscesux, GarSen, etc.).
GROTHEWDIECK defines a sheaf as a particular presheaf
satisfying certain exactness conditious. The reason for this
is technical. 1In his "sites" (= GROTHLNDIECK topologias)
there are not necessarily points of an object X, as a
consequence there are not necessarily "fibers'" (stalks
p~1(x)). In§7 I will write a short summary establishing the
equivalence of both points of view. In §8 I review the
essential facts concerning rings of fractions needed to
follow the details of the construction of A and sheaves of
A-modules attached to the A-module, XM .

let M be any A wmodule. Then we can counstruct a sheaf ¥ of A-modules whose stalk ac
every p € Spec A is the localized module }% .

Actually both coastructions of A and M are done sizultaneously by using the fact that the
localization theory for A «can become a particular case (when A is regarded as an A-module
over itself). Conversely, if ¥ is any sheaf of A wmodules (i.e. every M is an Ax-module

x
for Y¥x € Spec A) -the natural question arises whether_or not M comes from an A-module. This
property holds 1iff M is a cussi-coherent sheaf of A-codules.

The actual codstruction of A , inspired by the tape recording is given in §9. Preparatory
material is developed in §7 2nd. 388, A knowledgeable reader should .start =ith §£9. :

rEgen we shall be able to defime finally the category G of affine schemes, which s, in

fact, isomo:phic to the category Aff of algebraic spaces (cf. Ch. I) (f.e. the category of

representable functors on (), or what {s the same we can idantify the affine schemes with ' b

the objects of the cacegory opposite to G .

In order oy make this explicit we shall-actach to every commucative ring with unit

A(E Ob(G) the affine scheme (Spec A, Z) , L.e. the locally ringed spaca whose underlying topo-

logical space is Spec A = {p|p prime ideal of A} endowed with the spectral topology and >

whose structure sheaf A 1is the sheaf of local rings AP (p € Spec A) just mentioned. We shall

0]

Remexher th = €
enembe at KFg x. 0 Xg ; L.e. B 1is stable by finfte intersectionms. In otder to define

the germs (6'1) it is Suf--C1cn: to consider g Tather tnan the whole Iim.iIV OP X)
; (

-IIZ = S denotes the ring of fractions a/et

:
tarive gec S, = {fnin x 0} .

2

of 4 with deaominators i{n the muleipli-

IIT-6-3
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see that (Spoc 4, :{) ives back A<i0; moreover, 1f A iB i{s any merphisa fia G therz {s a

well ée.fincd zorynlsm of locally tinged spaces in the opposite direczlcm: (Spec B, E) -+ {Spec 4, Z) .
£* 'defincs-a continuous map Spec B ~ Spec A betweesn the underlying topological spaces and a

sheaf hemororphism (reversing the direction again).

It is important tc remark the fact that A might or mignt net be reduced_._!

(“’ GENERALITIES ON SHEAVES FOLLOVING FAC AND CGROTHENDIECK, RINGED SPACES

Since I believe that FAC is reasonably well-known, as 2 kind o
transition ffom classical to preparatibn for GROTHZNDIECK 's algebraic
geometr? and the definitiﬁniof_a sheat is given theré directly without

introducing first presheoaves. we 32all see the equivalience of both approachas.
: 9]

Following FAC a sheaf of abelian groups on a topological space X

' (2 : . S
is an étale covering(") p:S + X of aunother topological space. S onto X,

such that for every x € X the §£§EE. Sy = p-l(x) is an abelian group and
the map of the fibre product S Xy S - X(3’(cf. Ch. II, §83) desfined by
(7.1) (a,b) =~ a-b

is continuous.

4
i

There are two ways of comparing shesaves and presheaves in FAC:

S “is a sheaf, the map U+ I (S|U) assigning to every open set of X

. 4) . ’ ;
the abelian group of continuous sections ) is a presheaf, (CZ. §3) called the

canonical presheaf defined by § -or the prasheaf of local continuous
sections. On the other hand if P is anarbitrary presheaf of abelian

groups we can define the germs at x (£ X) nof an element £ & P(U) (U open

Q).

For ipstance the ¢rivial case that A N k is a field (Spec k, k) = ({0}, ¥!
(1) ' '

Similarly ve cza define sheaves of rings, loczl rings, sets, ete,

i:rtfﬁs context elzie co-/-r‘r‘sr means just that tis projection § gx is 2 loczl homeo-
stup Usi, 1‘.Y e. for every s € S there esxists anm opan neighborhcod U 3 x such that
S} 4ix a homeowcrrhism. . CF, Appendix for fuvrther iaforuatiea.
In the FAC definition of s&eaves
induced by Sx5 . . ) ’
(4).& conti 1 ! '
auous lo b )
o il :‘1 s::ct ilon of the 1hex‘ S on U (open in I 2 & continuous map 3: U <+ 3
u

3
SXS hnas the preduct zopology aand SxxS has the topology

III-6-4 111;7_1

DAt



-116-

5x) by a weli-known equivalence relation that can be defined as a direct

it

lim P(U) . Then we construct the limit sheaf S_ of the

TxEU P

presheaf P on X by means of the disjoint union SP = U P or under-
' x€X ©

lying set, by introducing a natural topology on SP such that if x € X

limit P
x

becomes an atale covering of Xv-and Ehe aigebraic Bperatiéns_become
continuous. These two functors bétween the categories Presh (X) and

Top (X) pf sheaves and presheaves are not inverse of each other. Precisely
we are concerned with the fact thét the preshéaf ? of continuous local

sections of the 1imit set SP of a presheaf P cannot be identified

canonically with P , but there is just a canonical map P = . The

natural problem arises of characterizing the presheaves P which can be

. .This problem was already

identified with the canonical presheaf of §,

stated and solved in FAC. The solution can be characterized by an exactness

condition:

The presheaf P 1is canonical iff for any open covering U = U
- . o
€

the following diagram is exaét:
7.1 ‘ F@) » T FU) 3 [ FU, OU.)
. ier i3 03
| We recommend expressing in worés the two vérifiéations involved in
this exactn;sé condition, checking that we get back thé“old characterization
of canonical shesves by the two conditions:

a) F is separated e F(U) is uniquely determined by all its restrictions.

b - X V A . - -
)] F is "local' i.e. for every map Ui + F(Ui) satisfying the
"matching condition" there exists a section (unique because of a)

such that F(U)) = F(U) Lo, .
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" The two functors

Top(X)ci Presh (X) (i inclusion, y(P) canonical sheaf)
Y

between the two categories(l> Top (X) and Presh(X) of sheaves and presheaves
over X are adjoint to each other: (cf. Ch. II), i.e. if S 1is a sheaf

and P a presheaf we have canonical identifications:

(7.2) Hom(S,y(P)) < Hom(i(S),P)
Top (X) Presh (X)

In this course (and in most of his publications) GROTHENDIECK takes
the exactness condition as definition of a sheaf, because it is more

categorical, i.e. we can replace Op(X) by anv category with fiber products;

summarizing: a sheaf over X 1is a presheaf satisfying the exactness condition.

With this approach the 'stalks' do not appear explicitly but this is

convenient for arbitrary "sites' (¢ GROTHENDIECK's Topologies) where the

stalks do not play any primary role.

The main objects of study of GROTHENDIECK's algebraic geometry, the

schemes, are particular instances of ringed spaces, i.e. of topological

spaces X with a structure sheaf of rings @X ; then they will be denoted
by a pair (X,@X} . The simplest examples of such structures known to the
reader, at least 1nforma11y< ) are manifolds of various types (topological
or C -differentiable in the sequel, to fix the ideas). Let us think of

a surface X , for instance. The local real valued functions on X form
a presheaf Uw IYU\@X) (U openin X, IKU‘@X) is the ring of functions

U =+ R).
¢y

The morphisms in Presh(X) are patural transformations. A morphism between sheaves. S = X,

T 3 X (defined as in FAC) is a continuous map S =+ T making commutative the trlangle s,T,X
and inducing fiber homomorphisms S -+ T for every x € X ,

2 ) :
( )We do not assume zny specialized knowledge on manifolds. It is enough to recall examples
from "Freshman Calculus" to replace curves or surfaces, by manifolds of dimension n.

I1I-7-3
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|
F
A map (x}@y) - (Y;@v) betwecen two surfaces means a continuous map
. (
¥ - Y which transfcrms ilocel functioas in local functions, and since
|

73
O

1

functions behave in a contravariant wey the only sensibla way of doing so

to lifr 2 local function ¢: U= ® {U open in Y) to a local
_ -1 -1 .

0. F: F "(U) ? R (where F “(U) is

\\\ open in, because F 1is continuous).

i . . .
(i::> More precisely we have a ring

homomorphism:

‘—-17 "
T(U,6,) » TG U,6)

s

Moreover, this operation is compatible with the construction of germs

(elemcnts of lim I'(U)). Let us make explicit the construction:
+ U3x
Let fU: U-+ IR, fvéiR be two local
1)

{ :
function's ‘defined in two openneighborhoods of
x. We write fU”'fV iff there exists a third

open set W C UN V such that £_|Ww = £ 1W.

It is easy to check that ~ i3 indead an

eguivalence relation (in the set of local

functions defined in open neighborhoods of =)

compatible with the ring operatizns. Th

]

[

22T 0

"
-
1
t
~
[ep]
[
[a
3
[
o
T

eguivalence class defined by fU is called th

x will be denoted bv capitzl script

T
s
W
re
T
¢
o
[52]
(W%}
e
3
3
p2sd
-
.
N
=
3
rr
vy
cr
oy
[
-
(3]
n
t

subscript x: &, G, H, ... This should not be confused with the rzal number

»
<7

x ’xx
F(x) (value of xg at x) which makes sense since £ ~ £ = f (x) = £ _(xu).

3 « -
Q)CQ:CLQL[Q'_'g ( C) or C according co the case. The C casz {s au

r
implies a astrocg Tesirictio Not evezy ¢ should be 1ifted, just those +i

. P
(Q)But ve camaot defiae™ (7)) for ¥ $x.
P
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The set of germs of functions at x has a natural ring structure. This r

} ing
@X,x of germs at x  contains R as a subfield when we identify any r © R
with the germ § of a locally constant function equal to r (r Fs= 5 75
] The map fU-% XE is a homomorphism of commutative rings with unit.
Moreover, the map XZ - XE(X) is also a rezl valued ring homomorvghism, whose
3
kernel m, is a mawimal idecal of @X X;In fact 1f fU(x) # 0 it remains # 0
»

in a certain open neighborhood ¢f x , as a consequence tha corresponding

- . . . ~ -1 3
germ o Is invertible, i.e. & €6 , in other words: the set
X X X,x
G = {F & @K ‘E (=) 7 O} consists of 21l the invertible elements of
X, x X L, X
8 ., The complemantary set m_ = (z €6 kS (x) = 0} is a maximal
b e X x X, x :

idcal moo. Commutative rings with unit having such a property, are called

local rings precisely because they appear natura ly in the local study of

(L

manifolds ju a sufficiently small neighborhood of any fived point x € X°.

Tt is clear that for any couple of corresponding points x, F(x)

x € X, F(x) € Y we can lift any germ at F(x) to a germ at

EF(U).

+ F preserving the values; in other words we defiine a

- & 4
9 x) T YR(%)

map between the two local rings &

- ale . .
Y)F(X) (SX;X making the diagram below

| Sy Sux
(7.3) !
. | Coo g
idR

(l)fz; 48 we present a shor: review of a purely algebraic approach to local rings following
the tzpe. In the wmeantime this short swzary by GROTHENDIECX czam help :...I1 racall that 2
2) cocmutative ring with idencity Is 2 local timg Lff there is jusc one caxizal ideal, or one
i cen also say thar the nca-invertible elements are stzble under sum and 2 fortiog! they
form sn ideal (becauss in any ring A ,if a2 € A is pon-icvertible, Xa 1s scill wen-
{nvertible for 2ay X € A) and this {deal would be the =2 21 f{deal. <his can also be

phrased as follows: For any two-elemeats f,g €A, £ T3 invercible implies chat
either ¥ or g 1is fovertidle, and oultiplying this by the inverse of this sum amouals to
_seying that cither f or 1 - £ wust be invertible for every f . Replacing £

by -f£ : elther £ or 1} +.f myst be f{overtible.
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commutative, where the vertical arrows map germs in the corresponding
(&3

value at F(x), x . In particular, if a germ vanishes at F(x) 1its

image vanishces at x also. In other words: The imace of the maximal

ideal of 6. by F* 1s contained in the wauimal ideal m of G
‘I.)}'(X) - d = VY o
R
or wnat is equivalent: the inverse image F*hl(ng of the maximal ideal
. S (1)
of &, is the maximal ideal of &_ .
X, 7, F (x)

These considerations suggest the right definition of merohism of

7 - .
rin 100 Shaces:

Let (X,@X), (Y,@Y) be two ringed spaccs.a) A morphism (X,G.) - (Y,&,

X
is a pair G = (£, 8) where f: X Y 1is 2 continucus mup between the

. . 2 T hoAr A e . A &
underlying topological spaces and 6 is an f-howmomorphism g@; CY - Gy

. ~ . . « IR TP
between the sheaves, i.e. for every x € X, there is a ring nomomorghis

8: 68, ...y 6
Y, £(%) X,x
It is clear how we can construct the catesory Rs of ringed spaces”
with the (¥, b as objects and the morphisms are the previously defined.

The foimer example shows how we sheould shawpen the definition for

locallv ringed soaces. A ringed space (X,@X) is called locally ringed.

iff the stalks GX , ateny x is a local ring.

(1) This situasicu suggests the algebrale d2finition of local homemorphism betwsea twe loeal
rings &,8' . If m, m' are the corresponding maximal ideals of &,5' and h:0 =448' is
. : -1, -
4an acditrary homoworphiss fa G, h (m') € m , but the prime {deal h 1(m’) £ Spec & wmight
, FES S ' .
Fa., h is local iff h "(m') =m . This croperty i1s equivalent to the fact that the
direzez image hH(m should be contalned in m' . Wa shall come back to this following the

taps

2 ; .
( ).I.:- X,Y topological spaczs 5 sheaves or rings {(noa necessarily local).

-~
SNy

I11-7-6
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The locally ringed spaces from a suvcategory frs (not fulll) o

the category ®Rs  such that if (X,@K) , (Y)@Y) beleong to Ob(Srs) a

X

of local regular fus:ztioes oa X ({.e. restrictions of the old "raziozal" or merccarphic

G

morphism <X’GY) - <Y’®Y> in Rs belongs to frs iff G = (£, 0)
is local, i.e. iff for every x € X, the induced morphism

-8 , e
G, RS between these two local rings is loczl, i.e. it satisfies
Y, (%) X, % R
cither one of tha two equivalent conditions treated below: {cf. footnote (2]

1) . o . . mined 4
- The direct image of m, is contained in m
._L(x) X

' 8 _(m_ & m
(7.4) x( r(x)) x
(7.5) e"l(m Y = m

: X T x f(x)
HISTORICAL REMARK.
The locally riaged spaces zppear very naturally in the Tstudy of

wmanifolds of various kinds, (cf. I, 40) for ilastzace for complex analytie maoifold (X, GL{)
is the riag of zerms of local holecmorpaic fumctions, SIRRT's FAC pazer infroduced them in
Classical Algebrzic Ceooetry over ac algebdbraically closed field, . Thea an affine 2lgehraice
variety Iin FAC's sense (%, SK) is the follewing particular casa:

X {s the maximil spectrim of a finitely generated k-zlgedra A wichout milpoczac
elexercs

I = Max & L = k{{, & eee; ¢l Wil i =0
In particelar X i3 irreduzible L£6 A s ac {ategral domain; % s the sheif of gerosa

finctions to ZARISKI open sets where they have no poles z2zd co “indererminacy polats,” i.e.

vhere they are actually defiped.

I1I-7-8:
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8. DIGRESSION ABOUT RINGS AND MODULES OF FRACTIONS, LOCAL RINGS,
LOCALIZATIONS.

ﬁ_‘present some preliminary information given by CGROTHENDIECK concerning the construz-
tion of the presheaves defining the structure sheaf A on X = Spec A and zhe sheaf M of
A-nodules attached to an arbitrary A-module ¥ .(1) Essentially, we are going to construct, in
several ways, rings of fractions S‘lA = {a/skl a€ A, s €3] and modules of fractions
s_lx = [(w/s 1 m €M, s €S} with denominators in a multiplicative set S C & :1 e :-arc mainly
interested in the cases S = {fnln 20} and S =A-p for pE€Specd . S A, Sf]}‘l are

abbreviated by the notations Af’“f-'—{

... We are going to construct a sheaf of rings according to this
| e ame L1
recipe (zhe one from Ch. IL, §§J , but, at the same time we shall

construct something more general, namely some sheaf of modules

M (x€X = Spec A) . We shall start. with a module M over A (which
x

we shall eventually wvary ) thus to M we will associate a sheaf M

Then, when M is equal to A T;egarded as an A-module over itse%fj, M
en, v |

becomes equal to the structure sheaf A that we are looking for.

We have to construct the functor £V ﬁ(f) (fea) . M(f) will be

. . _ D
the localized module an* at the multiplicative set Sg = {f ln z0}

which can be described in various ways. We now make 2 little

(3

parenthesis on commutative algebra.

Mf can be described as being the direct limit(l) of copies of

M, M = MCZ induced by non-negative integers &, where Ma is mapped into

Ma-+1 by mult;plléatlonrby £
1 / =
(8.1) Ma—» }‘a+1 Vo 0
69)]

All A-modules (A4 € ObG) M

are unitary, f.e. (I,m) 2 l.m=m Ym € M, where XM
of the category mA of

X, is an object
A-moduleg and 1 is a homomorphism of A-modules.
(2)I'bc reader wishi

vith ch. 1, §3.
3

ng to follow GROTHENDIECK's talk without my interruptions should continue

Full details can be found in EGA, I (THES) cCh. 0, pages 13-14

yaee

s - , ITI-8-1
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In this way M appcars as a dirvect limit (cf. Ch. II) of A-modules

M o= liwm M
— e

(8.2)
and therefore it is an  A-module and we have, of course, a canouical

homnomerphi sm

(8.3) Sg M Mg

because M can be viewed as the initial step : M = NO ‘

So we have constructed in terms of f (€4) another module Mf .

M will be fixed for a little while and [ will be allowed tovary. We

are going to characterize (8.3) by a universal property: Let us remark

that in this module M. multiplication bv £ becomes invertible

£
(Hint: look at the limit of the transition morphisms (8.1) . Morzove

v

of (8.3) 1s universal, with respect to the property that

1

EES nap Sf ‘

f-multiplication baccmes invertible.)

Namely if © : M =+ N 1is an A-homomorphism such that the hemothety

ni+ fn (Vn€N) is bijective (= it is an isomorpiism) there exist a unique

homomorphism M_ - N making the diagram

b
(8.4) \.,i,

cemmutative, So Mf appears as a solution of a universal problem

(mapping M into A-modules such that the f multiplication on the

image becomes an isomorphism). Therefore we see that M becomes
» £

functorial with respect to M, i.e. if we have a homomerphism M- N
FEQ the category mA of A modules| then there exists a unique homo-

- N_. which makes the diagram

morphism Mf £

II1I-8-2
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¥ —¢ N

: sfi jsf
(8.5 M 4
. }‘E —l ‘[

that the f-multiplication on the image is invertible. As a consequenc

.Sf factors through . in a unique way.

£

So we have alrecady two ways of describing M. @ either as a divect

limit or as a solution of a universal problem. Still we can give a

~

C s . - - . Rl
third descriptiou: hf can be vieved as a sct of formal fractiouns x/f

(8.6) M, = {X/fn i x€M, n 2 0} ' ' .

2

oo
(6334

f with non-negative exponents, where the module structure (addition an

cation by scalars)is defined in the obvious way, namely:

5]
[
pmt
T
[aad
g]
Pt
[N

>

. . . .
- o T n T T
(8.7) e x/fn +x'/f = (f x + qu')/zj*n
) L
(8.8 A/ = Q) /L TAEA
But first of all we need to define an equivalence relation betwsen
- e’ C , T '
pairs (x, £) ~ (x', £ ) such that x/f ==x"/& . We would like
. i ‘
" to do so by '‘chasing denominators.’” This would mean that <f5 - x'et =

But this is not quite an equivzlence Telation.. We have to remember that

multiplication by f should be bijective on the image. This means that

there should exist socme m = 0 such that

(8.9) P - x'f =0

i.c. 2s 2 set of formal quotiecnts of elecments of M divided by powers of

Conversely (8.9) actually defines an equivalence relation, in other words:

I11-8-3




[g]

=

[y

I
We can define x/fn as an equivalence class of pzairs (x,fl),(u =z 0)

with respect to the equivalence relation

s

1

(8.10) (,f9 ~ (x',£7) o (8.9) holds for some m =z 0 .

14

We leave to the reader the easy verifications that (8.7}, (8.8) are

Nt £ b b s

well defined.

o rtatih e WA o

f in A is invertible.

Now we can check that multiplication by £

. n - n+l, |
First of all it is surjective because we can write x/f = f(x/f )

£.(x/fy = (fx)/£ = 0 is equivalent
mt+l

m —
to the fact that there exist some m 2 0 such that £ (fx) = £ x =0

and it is injective also because

f . . o ,
‘ and this is equivalent to x/f =0 . So we can introduce in this way

a calculus of fractions. Besides we can define now Sf: A= Af by

§ o . . n_,.n
xw x/1 (1 =f ) or what is the same by =x = £ x/f .

This deszription of Mf in terms of fractions is essentially the

i same as the previous one because the composition of M = Mo = Ml Ao M

] n
maps x in f x .
1 - . .
{ When M 1is equal to A regarded as an A-algebra this construction
o o

gives an A-module homomorphism A - Af . But Af is not only an A-

module. It is also an A-algebra, where the product is defined by

@

(8.11) x/£H (y/fn,) = (xy)/f

Furthermore, for any M , we can see that Mf is an Af-modulc. This can

be seen in various ways, for instance the product (a/fm) (m/fn) (a €&m e

! ‘ . ) . n+m ,
| is well defined to be equal to am/f . Another way of seeing this is as

S &Y’
: The veader should verify that the preduct is well-defined (independent of tepresentatives

and that the ting axioms are satisfied).

I11-8-4
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follous: The ring Af is an A-algebra characterized by the following

vniversal property:

. . @ . . .
Any ring homomorphism & % R in a ring with unit (not neccssarily

commutative) such that @{f) 1is invertible factors throush A , making

e e vy 7 f

comnutative the diagram

Pl Y

(8.12) ' . f

N}

LR

Now if we take R to be the endomorphism ring End (H) of an
Abelian group to give a homomorphism A -3 R is the ssme thing as to
define in N a module structure over A . If this structure has the

property that £ operates as an isomorphism on N this means that N has

the structure or an A.~module end conversity: To zive an Ac-module

[}

N

structure Cover X

y4
o
[y
o
[0

fo eive a structure of an A-module on

N such that f operates as an isomorphizm. If we apply this to the

particular case of Mf then the A-module Mf becomes an Af—module
because f. operates on Mf as an isomorphism.

Finally we obtained several ways of describing the Af~module

. Now we shall see what hap

el

structure on I\If ans for a vartable f\:_A.

Now let us assume
3 (o
(8.13) Xf Xg

and let us define an A-homomorphism

(8.14) Mg - Mf

We shall see that there exists a unique A-homomorphism making

L
e

(8.15)

L

l

II1-8-5
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N

~d
1

ative (where the vertical arrows are the canounical homomorphisws of

commnul
M dinto the localized modules M, Mf). All 1 nced to prove s that
2
multiplication by g operating on Nf is an isoworphism (thus it factors

through M ). In fact, because of the inclusion (8.13) we have an
(=4

. . n - . . oy
identity of type f = gh (n = o, hCA) and since [ becomes invertible

in ¥, , & bccomes invertible in M, .
L k

On the other hand this map M= M (vhen (8.14) tholds for

¢
[

fixed) ds functorial with respect to ¥ . Because of the uniquencss of
the induced wmap (8.14) we have also transitivitv: If

(8.16) X.CX CX

we have a comuutative diagram

Moo— M
n

3
(8.17 ot
.1 y

£

hecause the uvnique dotted arrow should be equal to the composition.

o=

{ln order to interpret correctly all the details of the construciion

-

of the sheaves A, M in §9 we need to also know the properties of

localizations or modules or rings of fractions with respect to arbitracy

multiplicative sets S C A ., This construction of commutative algebra

can be regarded as a wide generalization of the construction of the field

of fractions  of an integral domain I . Let us write I% = T - {o} .

Then, a fraction a/b € Q (a €I, b € I*) is an equivalence class of

I X I* with respect to the equivalence relacion
(8.18) (al,bl) ~ (gz,bz) & albz - azb] =0
There is 2 canonical map I »{) defined by

111-8~h
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(8.19) ar a/l

If A € ObG but is not an integral domain the corresponding property

(8.18) (equality of cross products) does not define any equivaleuce relation.

However it is possible to define such a generalization of the "calculus

NS

with fractions' just by replacing I by an arbitrery multiplicative set

iy

S of A ,(already found in the definition of prime ideals (c¢f£. Ch. I ).)

We recall the definition:

A subset S8 of A (A € 0B3) is called multiplicatively closed 1£f

the two following properties hold

D (a,b) € SXS = ab £ 5

2) 15

1), 2) can be replaced by the unique condition that the product of any finite
family of elements of S belongs to S . Then the unit element of A

appears to be the preduct of an empty family of elements of § .<1>

Such sets always exist in any A € 0Ob 0 for instance we can take S = A,

Non trivial examples are:
)S = A‘_ n 1f p € Spec A (by definition of prime ideal yp prime

& A-p mﬁlﬁ.). !‘

2)The set of non-zero divisors of any A € 0bG is multiplicative.

3)Let f be any element of A . Then

(8.20) s, = (f'nez, n 2 0}

(l)If J 1is a finite non empty set and @{J) a family of elements of A indexed by J such a
family is a mwap o©: J -+ A . Then n«p = 0 (i . 1If 9 and p, are two finite non empty
R ’ jea
families O = «f1 : If we want to maintain this property for J = ¢, we note there

S T B o ' ’
ig 2 unique map <9 A and @9 +1i =9 thus ﬂ¢‘l.

.III-8-7




i is a multiplicntivé set. For f = 0,1 . SO = {0}, 51 = {l} .

The original case, when A 1is an integral domain becomes a particular
case because A is an integral domain iff {0} & Spec & .
B ; The intersection of any non empty family of multiplicative sets (m.s.)
of A is multiplicative. In particular for any 7T C A, the interscction
of the (non empty’) fomily of all m.s. of A containing T is
the smallest m.s. ST containing T . ST éonsists of all the products
of finite families of elements of T .
The interest of the multiplicative sets comes from the following property:

Let S be any m,s. of A . Let (a‘,si) € Ax8 , 1 =1,2 be two

pairs. Let us write (al,sl)ﬂ'(az,s

8.21 -
( ) s(als2

34

(1

for some s £ S . Then ~ 1is an equivalence relation.' ’In the particulex

case that A 1s integral and § = A - {0} ,(8.21) becomes (8.18).

We deunote by S_lA the quotient set AXS/~ in order to recall that

-1 . . . . , N
S "A consists of "fractiouns'" a/s with numerators in A and denominaters

in S . Precisely a/s denotes the (~y-class of (a,s) € AXS .

-1 '
S A has a natural structure of commutative ring with unit defined by

th 1 | = ' s a
e usual laws al/s1 + aZ/SZ (als2 + a2°1)/5152‘ and (al/sl)(az/sz)

S—l

= (alaz)/slsz; 0/i and 1/1 are the zero and unit element of A,

There is a natural morphism in (C: A = S-lA defined by (7.2) that

will be denoted by /1S or just /1 when S 1is fixed. ’
Wees1 ; : '
3 Re txi\'rity and sysmetry ate clear. Transitivity follows fram: (a,s) ~ (a',s")
| : © tas' - 2's) =0 (a',s") ~ (a",;s™ <= c'(a's" - a"s') (¢,t" € S) and

tt's'(a"s - s"a) = 0 with tt's  €o.

ITI-8-8 .
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WARNING: We cannot wiite 'maturally” a = a/l , because for an

arbitrary S /1 is not necessarily injective. In fact, we can cowpute

easily the kernel of /lS: a/l = 0/1 iff sa =0 for some s €S . As

a conseguence: /1S is injective iff S does not contain divisors of

zZero.

-1 : : .
S "A is called the ving of fractions of S with denominators in S .

In particular if § 1is the set of all non zero divisors of A , S "8 is

called the total ring of fractionms of A (it is not necessarily a field).

. . e . . . . -1
Since /lS is Iinjective in this case we can embed A 1m S "4 .

The ring of fractions c¢f A with respect to the multiplicative set

Sg = {fn\n 2 2} plays a very important role in the construction of the
structure sheaf A of the affine scheme (Spec A, A) attached to any A € (.

/1 A= s 'A are called localizations

-1 A .
Both S "A and the morphism

the ring A localized at S

although S—lA is referred to as

This localization morphism /1S has the follecwing universal property

- o . . -1, .
The image s/l of any element s © S 1S invertible in S A ;

precisel? ;(s/l)(l/s) = 1/1 . Moreover, let «¢: A + B be any morphism in

G such that o(s) is invertible in B for any s €S . Then, there

-1 .
exist a unique morphism u: S A - B such that the diagram

/1
A ~—-§-’>S!-1A
(8.19) . ' fu
9 v
. 3

commutes,

Let S T be an inclusion between two multiplicative sets in A ,
The induced inclusion AXS & AXT factors through the equivalence relation.l

ITI-8-9
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' -1 -1
~s and ~o thus there is an induced homomorphism S A + T A .

A particularly important special case needed in the construction of

~ el

A dis the case that T D § is the saturated multiplicative set S deduced

from S . Its definition is

s =ab, b & A}

m
w
[0}

-+

S = {a € AlEs

3 (D)

in other words S  consists of the divicors of elemaonts of S .

The interest of S 1is that the canonical homomorphism § A = § A

is an isomorphism. Besides S =S .

In fact in any S "A the rule a/s = at/st (for any t € S) is wvalid

—1 ) )
S A there exist t € S such that

st €5 = afs = at/st € 5 'a , thus sla 3 E—lA, q.e.d.

m

Regarding division, if a/s
. . , -1 .

EXAMPLES: For every p € Spec A , the localized ring (& - p) "A 1is
denoted more simply by Ap and it is commonly referred to as the locali-

zation of A at b . 1In particular if (0) €A (» A 1is an integral

domain) A{O} is the field of fractions of A .
The name is justified because Ap € (G is in fact a local ring.

}We already encountered local rings through our discussion of ringed spaces

and locally ringed spaces in §7. I will give a brief review of the
technical alggbraic treatment of local rings, following the tape: __J
DIGRESSION ON LOCAL RINGS (%)

..Let & be a ring (commutative with unit, as usual, & € 0b C .

(1>Chcck the imuediate facts that S 1is nultipiicsitively clesed and courains S .

- K
( )f;; advise the knowledzeable reader to skip this digression {f he {s mainly {nterested ia
rings of fractioas and localiza:ionslj

I11-8-10



-132-

(1)

We say that © is a local ring if and only if there is

1

one and only one maximal ideal m _in & . Ve recall the fact that the

existence of at least one maximal ideal implics that 8 is not zero {(because of

KRULL's Theorem). In terms of the Spectrum, if you like geometrical language,

we know that maximal ideals of A correspond bijectively to closed points

of Spec A . Thus & 1is a local ring iff there is just one closed point

in Spec &.

Let (8,m) be a pair where & € 0bd , and o is an ideal of & .

@ is local with maximal ideal m 1ff

@
-
"
@
1

This comes from the fact that in any ring A [€ 0b G (not necessarily

local) and element £ 1is invertible if and only if it does not belong to

any maximal ideal, thus fA = A is the unit ideal, because we have:

4/£0 = 0 (because of KRULL's theorem) = A = fA . Conversely if

the quotient ring &/m is a field because any element of

@
o
i

@
'

=

6/m# 0 i's the image of some invertible £ €6% . Any ideal a =06 of

© 1is contained in m otherwise if f €m, £ ¥ m £ is invertible

The field k(m = 6/m is called the residue field of the local ring &.

Ay

(111: is frasquent to .fnclude the Noetherian coadition in the definition. If for I{nstancs
NAGATA: & local & 0O Noetherian+ @ = 0% - m) , then the seccad condition alor"»“:“
referred to as & quasi-local. e is

CROTHENDIECK has a certain tendency to get rid of Noetherian resfrictions. For iastance
in our context for anm arbitrary A, A is not nscessarily; Hoetherian. Thus when & i3

Koetheriaa we shall make it explicit by ca].giing',abouc'.\'oeth:rian loeal rinzs.{

owing ots whoss proef is |
f or 1 - f is taverzible.

{Q”Anochcr characteristic conditicn for & to be loczl {s the foll
the reader: & R Qb.C] is local {ff for every f €8 «ft er

I1-8-11
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As a natural example let us check that Ap is in fact a local ring

(1

with maximal ideal m = p Ap for every ©p € Spec A:
An element a of AD is a fraction £f/g (f,g €A , g % p). a belongs
to pAp iff it can be written as f£/g with f € p thus £/g = £(l/g) .

pA is clearly an ideal of Ap . The element a does not belong to

p A, 1ff it cannot be written in this form, i.e. iff a = f/g with

£4¢p,g#yp. Then a is invertible with al = g/f .

9. DEFINITION OF THE SHEAVES #, A .

++.30 we have a presheaf M (cr &) of A-madules (of A-algebras) defined in the ordered

category of elements £ € A

(9.1) Eni, (or fwa) ¥Fea

4

1

Ve could in fact take the associated shaaf [Zs definition of M, iJ as we did in the book

of DIEUDOuNE (EGA-I-Springer, DET 1:3+4, page 198) and be happy..., but we want to prove
directly that the presheaves X, M oare sheavesCl): {Ete. for any open coveving
9.2 Cox = ;
.2 Xe = YU %g
i€l i
of basic open sets in Spec & we can defline by functoriality the diagrams
. o g, .
(9.3) 0 - Mf -+ 0 Mf 4 OM, . =20
- i1 1 1,5 1%
_ 4Hoi Mo, . .
(9.3)" 024, + ma. ima.. a0
. £ e L, I 5 :
1€l i i,i 7373

and we need to check that thay are sxact, for 2any £ € A and for any covering of Xf .

In this course (and in most of his publications) GROTHENDIECK takes the exactness
condition as definition of a cheaf, beczuse it is more categorical, i,e. we can replace
: XE can replace

Op(X) by any categorv with fiber products; surmarizing: a sheaf over X 1{is a presheaf

satisfying the exactness condition.

With this approach the "stalks' do not appear explicitly but this is convenient for

arbitrary "sites” (= GROTHENDIECK's Topologies) where the stalks do not play any primary role.

(l)Thc localization map A = AP gives A_  a canonical structure of A-algebra, thus Lf B CA,

the set BA C A nakes sense.

N - : . ; £
Kfjﬂe proves scmething more here: M, & are sheaves over the site B of basic open sets ©
the spectral topology in Spec &, cf. Ch. II §3.

IT1-8-12 II1~-7-1
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rE;t U € Obf3 be any basic open set of X = Spec A . Then, by

but

definition there is at least one element f € A such that U = Xf s

this £ does not need to be unique, for instance X. = X.n (n = 1) and
f £

we can find plenty of examples where f # £' . The modules and rings

Mf’ Af apparently depending on the choice of a representative f depends
actually on U(= Xf) only, because the multiplicative set Sf = {fn\n = 0}

defines the same ring as the saturated multiplicative set SU which depends
only on U . 1In other words any fraction m/s € %JLM (or a/s € S—lA)
. U

can be written also in the form m'/f" (if U =X or a'/f . As a

£

consequence we can replace (9.1) by

(9.1)" U - M(U) (or U + A(U)) YU € 0bf
, , -1 -1
where we wrote M(U), A(U) for short instead of SU M, SU A and replace
(9.2) by
9.2) 1 U= Uvu,
i€1r ~

with U,‘l'= X in such a way that the transition morphisms M. -+ M_.

i fi f fi
(Af - Af‘) can be written intrinsically as M{U) - M(Ui) Aam - A(Ui)) 5

i
i.e. they are independent on the choice of f’fi . In other words the

functorial properties of ﬁ, A are indeed independent of any choice of
representatives. In §3 we completed the necessary steps in order to make
these variations very easily.

In order to prove that M is a sheaf I need to prove that for
every £ € A the diagram (9.3) is exact. Since X 1is quasi-compact
we will assume I to be finite. We shall divide the.proof in two natural

steps.
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L Mp, 1is injective (» exactness in the first step)

Let us assume that all

. N _
the images pi(x/t ) are zero for every i

."

where x/f" € Mg . We need to prove that x/f =0 .
1f p.(x/fn) = (x/fn)/l £ Mfi is equal to zero there exists some
i
. mi n ai n . . . ~
m, =2 0 such that f£. (x/f) = (f; x/E =0 (in Mf) arnd this implies
* ! : m£ m.

the existence of scome f such that f fi x = 0 ; then since

i nd = vors P
finite we can replace m! by m = max m; (i € I) and we obtain
i

. m.
(9.4) fmfilx =0

On the other hand the inclusion Xf DUKX o implies the existence

n

I 1is

we can

iel i
f,
i
1 mi - B
of a relation £ = p) g<fi that together with (9.4) implies
’ ier =
+m' n . ' . . .
Ty =0 = x/f is equal to zero in Mf ; Q.e.d. This takes
the exactness of (9.3) in the first step.
2) Exacrtness in the middle term of (9.3):
Let us assume the matching condition
' fi o, £, n,
(9.5) pr g (x/£7) = ngf (<. /£.%y ewm, .
B B R 1y
a.
for every pair i,j € I where xi/fil €M, , ¥i €I . Since
4 £,
i ,
finite we can assume n = n, ¥l just multiplying x. and £.* by
i i
suitable powers of fi . Moreover since M, = M o {¥n > 1)
. - L. i
= i

assume n = 1 . Then the matching condition assumes the form

9.6 £) M, - £ = integer
( ) (fi J) (fjxi Lixj) 0 mij integers = 0
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1 m . -
(9.6) (fifj) (fjxi fixj) =9
or
+1 m+1
9.6) " £ty . -
( ) 3 b fi jj 0

- . C. o +1 :
where y. = f?xi (1 €1) ({.e. _Xi/fi = yi/f? ) , thus (9.6)"' reduces

to the case m =1 .

Let us write now y = L 8;Y; (where, as before o= b g_=?+1\ .
i€l jer t ot
Then we have
A _m+1 L1 1
(9.7) f‘yi = ( Zlgjrj L)Yi = f? (Lgy) = f?+“y
j€I jex t 4 L
which is squivalent to the fact that pi(y/fn) = y./f?+1 with y/fn &M
i 1 f

q.e.d.

REMARK. The previous construction shows that localization of an A-module

M with respect to a variable element £ € A can alsc be used as

3

localization 1in the topological sense, namely as taking sections of a

certain sheaf M with respect to asmallierbasicopenser X f% Obid |,
o

Tn particalar, we have
(9.8) M) = M, = M

T;ocalization with respect to the unit element of fi

Thus we view M as the A-module of 2lobal continuous sections of

the

sheaf

III-9-4%.

M -over Spec A r;.e. we 'recover’ M! and the localizatiom map
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M=M -+ M is interpreted as the restriction in the topological sense to

1 f
the basic open set Xf(})
In the case M = A:
A = Xl = A 1i.e, the original ring A becomes isomorphic with this

ring of global coutinucus sections of the structure sheaf A= @‘ on X .
L

This interpretation of sheaf theory over Spec A 1s very important

if we want to give any geometric sense to commutative algebra .

10. IDENTIFICATION OF G WITH THE CATEGORY OF AFFINE SCHEMES.

L[]
We know that the category C opposite to the category (O of commutative rvings with unit
{s isomorphic with the category Af of affine algebraic spaces (cf. Ch. I ) or what is the
same, the category of cuvariant representeble funcrors: G - Sats. Namely to every A(g£ 0bC)

corresponds the affine algebraic space X, =V i.e. the representable functor
S P A A 2 P

k- B:ig(A,k) (k € Ob Q) . CROTHENDIECK's second (and more geomerric) interpretation aof ¢
in te of affine schenes is as follows:

s
£

To every 4 € 0bG corresponds the affine scheme (Spec A,Z) , 1.e. the locally ringad space,
whose underiying topoiogical space is the spectrum Spec &4 = [p}p prime in A} endowed wich

its spectral topology (cf. §&) and A_is the structure sheaf defined in $9. Couversely
(Spec.A,a) gives back A = I'(Spec A,A) as the ring of global sectiouns of the structure sheaf.

An arbitrary ring homomorphism [I; .Ej 5

(10.1) £: A+ B
{nduces a wmorphism
* -
(10.2) £ : (Spec B,E) -+ (Spec 4,A)

* -
in tha category frs of locally ringed spaces (cf. §7), where f = (Spec £,f) counsists of
tihe continuous map

(10.3) Spec £: Spec B <+ Spec A

!ZI)This informal description can be made more precisk, following ZGA-Springer, (Prop. 1.3.6,
page 199) by the following statement:

Ibe open g=t Xf can be idenrtfied cancnicallv with the Soectrum Spec Af of the

localized ring A, - and if with the Testriction ﬁle . ~_1

II1I-9-5 I71-10~-1
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induced between the underlying topological spaces and a (Spec f)-morphism (cf. § ):
(10.4) HE TR

among the structure sheaves.

Counversely: any morphism G = (,0): (Spec B,B) =+ (Spec 4,%) between the two l.r.s.

induces a morphism G : 4~ B among the rings of global secticns of both structure sheaves
guch that

%
(10.5) Spec G = G =6
In other words:

The affine schemes form a full subcategory of the categorv &frs of locally rinsed sraces
that we can identify with the category (° opposite to G .

- ® 3 . e
The two functors f -+ (Spec £,f) (5,8 + 8 )) are contravariant fumnctors G =+G (@ =@Q)
which establish a complete dictionary between the language of commutative algebra and the
geomettic language of localiy ringad spaces1

We have seen that if we associate to every commutative ring with unit &

the ringed space (X’@Y) :
(10.6) A v (X,@X) X = SPCC A) @5{ = Z

We can recover the ring A as being the ring of global sections of the
" structure sheaf AxIYX,QX)I therefore we can feel very secure that we have
recaptured all information regarding A (or what amounts to the same,

about the corresponding algebraic space IA r:%. Ch. {EJ in terms of this

geometric object ,:;e affine scheme (Spec A,§21 . But in order to feel
still wmore at ease we have to see how the morphism between rings rzn EJ
(or equivalently between affine algebraic spaces) can be interpreted in

terms of the spectra. So let us now give a homomorphism

(10.7) u: A9 B

[in G] and look at the corresponding map between the spectra.

11-0-2
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(10.8) ©: X oY

.

© = Specu = u )

vy
L

which carrics every

(where- X = Spec B, Y = Spec A and

. . - . . . . -1 - :
prime ideal p of B 1into its inverse image u (p) € X . We have seen

f:%. §45 that this is a continuous wmap from X into Y .

Now 1 want to sec how this map relates to the sheaves on Y and X

Let us start with the case of the

associated to modules over A and B .

structure sheaves @X,®Y . The mep ¢ induces a natural homcmorphism of

sheaves of rings

(10.9)

(in the opposite direction of ¢ ), or what amounts to the same we have a

natural homomorphism of the shear of rings @Y into the direct image

I'e
0.6, of @X\2> by @ .

define it only for the presheaves, namaly for every f € A I have to

(10,9)) I nesed to

In order to define ¢ (cf.

define a ring homomorphism:

-1 (1)
(10.190) I%Yf,®y> 2 T (Yf),@x>

between the sactions of both sheaves over the open sets Y. C Y and

¢;1(Yf) C X . Now we need to make explicit what (10.10) means, using the

fact that (Yf,@y) = Ag (4 localized in £ <cf. § ) and the formula
-1 . . . . -1 -

4] (Yf) = Xu(f) (proved in 84), which implies T'(© (Yf>{@K> = Bu(f) ; or,

Y. of the dirsct txzage q:*'\'sx)

1¢9)]
£

Rezenber that

of o, 1a Y [cf. §3).

o1
T '(YE‘) ,Gx) i3 the riag of sections ovarv

I1I-10-3
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what is the same, we have a homomorphism

Bf)

- - =
induced by u . These homomorphisms are compatible with transition maps,

i.e. if X % X_ we have a commutative diagram
L

Ag P Bun = B¢
(10.12)

v _

4 3@ = %

T;Bere the-horizontal arrows are of type (10.11), i.e. x/f; = u(x)/(u(f))n

and the vertical arrows denote restriction morphisms. This means that ©

can be viewed as a morphism of ringed spaces(l) (;%. § ) D: (X,@X) -+ Y,@Y) .
REMARK. This homomorphism A i B can be reconstructed when we know

the corresponding homomorphism for the ringed spaces (X,@X) - (Y,@Y) 5

because u can be viewed as being the homomorphism IYY,@Y) - ITX)GX)

induced betweén the two rings of global sections it suffices to take

f=1=u(f)y =1, y = vy B ox = ﬁil. In other words we have sean quite

trivially that ring homomorphisms can be interpreted as particular cases of

morphisms of ringed spaces, i.e. we have an injective map:

(10.13) ) Homa (A,B) & HOmRs((X:@X)) (Y)GY))

Now we want to see what are the special properties of the morphisms
r;; the category Rs of ringed spac§fl which express that they come from
ring homomorphisms. Here we have to recall that both (X,OX),(Y,Oy) are

fgﬁjects of the category &rs ofJ locally ringed spaces, i.e. that the

(I)The equality Bu(f) = B; recalls the fact that the localization of the ring B I—é Ob_G_]

in the image u(f). of f by u 1s canonically isomorphic with the localiza®<ca of B
regarded as an A-module with respect to f . We leave the easy proof to the reader.

I11-10-3
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stalils of the structure sheavas ar cvery point x € X (or y € Y) are

SRy

local rings gIn other words (10.13) can also be written ac
(10,14 HC:‘LG {(A,B) < Homirs ((X’@X> 5 (Y’@Y>_£

But a homomorphism (3: X 4 Y of finged spaces impliss that for every

-y

. c - . - . .
choice of x £ X, vy € Y such that ¥y = ©{x) we get a ring homomorphism

(10.15) u &, 2+ &
. X 1,y £,x

in the opposite direction between the stelk at y,x . This homomorphisn
e éin G between the two local

1

rings is kind of "reasonable' iff it

is a so-called local homecmornhism,

i.e, iff the inverse image u “{(m )
X

of the maximal ideal m o2 i.e,

IS Y ¢
(10.16) u loczl u (mx) H& .

:ﬂﬂ
Accordingly, a morphism ¢: <X’@X> - (Y,@Y) iin %3§ of ringed

spaces is said to be local, or a morphism of locally ringed spaces §{= in frs

(1) Remember that for an arbitrarv u (in G, ur & 6" ®,8' localirings) we havz
-1 Ceo . . ) -
u (@) m. u is said to be local iff this inclusion becomes equalizy: u 1(m') = m
and this is equivalent to u(m) < m' (cf. 3§ page ) I conzinue with the :ap_e_:{ ...thi

hoU

b

=
2%
o

condition insures that u passes to the quotient k = k' (whare k,k' are the residue 3

k =6/m, kX' =8'/m') it such a way tnac the diagram
& 26’
} !
k- k'
cowmutas (where the vertical bars are canonfcal profections). JAnother way of viawing this

* I Lo
is the following: f €@ o u(f) €8 .. 0f course {£ £ is invertibls {n & r; £ :@J .
u(f) s also invertible in & (whether or not &,8" are loecal). But the opposite [mpli-
cation e holds only tha lccal casa,

111-10-5
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iff for every pair of correspounding points (x,c(x)) the homowcrphism

(1)

(10.15) between the stalks is a 1ccal homomorphism of local rings. Now

we can prove that the image of Hom‘:L (A,B) in the maop {10.4) 1is a set of
local morphisms. The converse is true, thus the inclusion (10.4) is

actually a bijection
(10.16) How, (4,3) 3 Homirs((Spec 3,%), (Spec A,%)) = Mor. (X,¥)

11. RECOVERY OF THE LOST GROUNMD RING %k . The dictionary we have set up
so far between rings and affine schemes viewed as particular cases of
locally ringed spaces, tells us how to interpret the ring A of 0bOd , or,
if you prefer the object EA of the cppcsite category of affime algebraic
spaces which are those in which we were interested from the very start

(cf. Ch. II) in terms of the l.r.s. (Spec 4, Z), i.e. in terms of the
affine schQAE bijectively attached to ﬁhe affine algebraic space

- (D
}:A (& Cb Alfz) .

precise categorical"fanguage we have the functors

Using
. | . (2)
(11.1) Sch: G = frs Sch Aff:Z - $rs
; — . e -
Sch = (Spec, ") contravariant, Sch ccvariant,

Both images Sch(G), Sch’ (4££,,) can be identified with a full subd-

1), .-
Afrzz denotes the category of (absolute, i.e. over Z) affine algsbraic spaces. The
category Affk, neaded v;r)i socn,ls the categnry of affine algebraic spanss .over k

{(k € 0bG) .

(2) - Fi 3 .
Whete ffz has been canonically identifiasd with th= opposite caregory J of G .

i;‘:‘{cmbcr that G = GZ (cf. Ch. I, §27), i.e. rings of C and Z -algebras avre cthz saze
ng. .

ITI-11-1




No 154

[

AL ALt S Rt AR

i
i
i
i
i
X

-143-

~ - K} 1 ° - . N 1 .
catesory of  Sfvs, i.«. both Sch, Sch are fully faithful (with reversiu

arrows, of course,for Sch).
Our ground ring %k (€ 0b(G) has been "lost! somewhat because it did

not play any role in the constructions of Sch(A) . So we need to see how

to recover it., Let

(11.2) u: k 4+ A

be the structure morrhism of the k-algebra 4 . Then our dictionaries (11.1)

give us two maps:

(11.3) Schu: Sch(A) - Sch(k) 3ch°(zk) - Scho(EA)

(the first one reversing arrows). By decomposing Sch u in (Spec u, Q)

we see that U: K »+ A gives the sheaf-homomorphism between the structure

sheaves; looking at the stalks in corresponding points we have homomorphisms

~

k 2 @x -G8 which, by composition tells us that every stzlk of A has a

induced structure of k-algébra. Since A = T'(X,A) the couverse preperty

is true; any structure of A as a sheaf of k-algebras yields a
structure morphism (1.2) of A as a k-algebra.
We can summarize these remarks as follows:

If we reintroduce &k € 0bQ as a ground ring, @, {rs, Aff, Sch

are replaced by

; : * . AF ¢
(11.1) Schk. Gk -+ Srsk Schk._A.fk - Irs,

k, Zrs, 1is
o~

where Affk is the categorv of affine algebraic spaces over
the category of locally ringed spaces (with @X a structure sheaf of

k-algebras), etc. -

I11-11-2
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The absolute case (when k 1is not mentioned explicitly) aust be

reconsidered whenwe take k=2Z (the initial object of Q , cf. ch. I, 32).

In classical algebraic geometry k was a field (often algebraically
closed, k = T during many piloneering years,...). Then (Spec k,?) is
reduced to a single point (0) and the field k 'sitting" on (0)
((0),k) . Moreover in clacsical times A used to be a finitely generated

k-algebra: A = k[gl,gz,...,gu

ﬁfi EXAM?LES OF AFFINE SCHEMES. RECONSIDERATION OF NILPOTENT ELEMENTS.
We shall reconsider the cases 'of §S, pages 108,... . We already see
how, by adding A to Spec A we were able to recover - A from the f4.r.s.
(Spec A, A) . We saw this already in the trivial case (Spec k, k), where
the underlying topological space is a one point set.

In the examples coming from an irreducible complex algebraic variety V
if A does not have nilpotent elements the stalks at the ”closed'points" m € Max A
are the local rings Am of "raticnal functions' f/g (£,g) € A!with g(my #0
o g £ 0 modm. ?he stalk at a point 1 - which is not closed réprese:ts the
local ring}of'rational functions which are nct "o" at the irreducible sub-
variety Wpl represented by p (g(x) 1is not identically zero at W).

When' V is not irreducible, there is no '"field of ratiomal functions'.
This once aéain.shows the advantage of the sheaf theoretic point of view which
replaces the old birational point of view (useful only for irreducible var
varieties).

‘The stalk of Z in (0) € Spec Z is the field @ of the rationals

my = 0 , thus the residue field at (0) is = @ . For any prime P, @X >
2

is the ring of rational numbers a/b (a,b € Z) such that b # 0 (mcd p) m,

I1II-11-2 II1-12-1
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is the ideal of ®K (p)? and a =0 mod » and the residue field
“o
K (p) 1is isomorphic with the prime field of characteristic p , Z .

p
There is nothing espacially vemarkable about introducing a
structure sheaf for a local ring & .

The existence or nonexistence of nilpotent elements in A does not plav any

rdle in the construction of the structure sheaf A and the fact that A

is isomorphic with IKX)K) (X = Spec A) shows that the localizations of
any a © A for all the p € Spec A cannot alwaye be equal to zero, unless
a = 0 . This shows that the interpretation of A as a sheaf of germs of
local functions, whicﬂ was so useful at the beginning, is no longer legi-
timate in the general case: first of all the range of wvalues é(mp) € K (v)
changes from point to point (it is not a fixed field k as in the classical
case of Max.A (A afinitely generated k-algebra without nilootent elemants,
k an algebraically closed field)). Anincorrect consideration of the elements
of the total space of A as germs of functions applied to a non trivial
nilpotent element a € A leads to the ''paradox'" of 'functions which are

¢

not zero but whosewvalue atany x € Spec A 1is zero' (® a € p_, Tx € Spec 4,

A

& a & Nil A).

13. QUASI-COHERENT SHEAVES. THE FUNCTOR M » q. lWe study the covarizant functor

= mA -+ Mod (4) Dbetween the category of i-modules mA and the category of @X-modules in

X =Spec &4 (X ¥ 3A) . This is a very important instance of the "dictionary" between commutative
2lgebra and ringed spac:s.[

GROTHENDIECK SUMMARY: We are going to make explicit the funmctorial correspondence M =+ M
between A-mcdules M € Ob mA and sheaves of S-modules, M, on the Spectrum X of the ring A:
X = Spec A = [pip prime ideal in A} viewed as a topological space(l) endowed with the shezaf
of rings GX =X (cf. § ). We shall see that the category mA of A-modules can be identi-

fied with a full-subcategory of the category of all Zx-modules (x € X) over X , which is
(2)

precisely the catcgory of the so-called gnasi-ccherent sheaves over X . This E&asi—coherengﬂ
18 2 purely local condition on the Gx-modules of any ringed space (X,GX) (c£. § 7). Namely,

they are those which canbe written locally as cokernels of homomorphisms of locally free
modules over A .

This dictionary between A-modules and sheaves of modules om X is compatiblz with most
things that we can think of, Namely, this functor commutes:

I11-12-2 III-13-1
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1) .with finite sums, {.e. with finite products (the functor M » ¥ is additive)

2) with tensor products:

(13.1) M@AN 3 ME4 )

3) With Hom:

4t

(13.2) ' Hom, (¥, N) Hm;Gx,ﬁ)

(provided the first term is of finite presentation). 1In additiom:

4y It is exact, i.e.
(13.3) 0 4M 4 M 4N" 40 exact = 04X 284840 exact, and

5) 1t is fully faithful, -

The last statement means that the category mA can be viewed as beipp a full subcategory

of the category Mod (A) of A-modules.

One point is convenient to emphasize: This functor ~ does not commute

with arbitrary products T (I not necessarily finite). Precisely: it

B 1€l
is not true that T M. is canonically isomorphic with I M. :
: i , i
i€l v igl
S~ —
(13.4) - oM 3 1 H,

ier * o ier

This comes from the fact that the property denied in (12.4) would be

trué iff for every f € A the homomorphism (Il Mi)f - I Mi would be

ier iel °f
an isomorphism for every £ . This of course is not true! The localization

is just a particular case of ring extension from A to Af and a2 ring
extension does not commute with products. Take for instance all the Mi

to be equal to A . Then the question is whether (Al)f is naturally

isomorphic with (Af) . Let us check what this means. We have a family
n

. ‘ » - I
of elements of type (ai/f “Yi€I on one hand and on the other (x/£)

with a fixed exponent. It is clear that if I 1is infinite the exponents

I11I-13-4
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don't necd to be bounded!

We should also be careful that formation of Hom( , ) does not commute

with taking the tildas, i.e. in general we have an arrow

Hom, (4,N) = Hom a1,
X

which in general is not an isomorphism. We can see this easily by taking
M= AI with I infinite, just by reduction to the previous case. The
"right" assumption, as we said in 2) (formula (12.2)) is that M should
be of finite presentation.

1) ;
4. APPENDIY ON SHEAVES OF SETSF ’ .

The fellowing notes on sheaves of sers were delivered by GROVHENDIECK at tha beginning
lectures of his course on topoi. To include this in 47 would be tas digressive; thus I prefer
to faclude it in the Appendix, which should be particularly useful for readers with a prior
knowledge of FAC; at the same time it would be helpful as an introduction to the abstracr

approach of CODEMENT's Bible.

I am going to talk about the theorv of topoi. I like to see it as a

kind of generalization of classical general tooology. As a background we

shall assume some familiarity with topological spaces, continuous maps,
howeomorphisms, etc. ete. and on the other hand familiarity with the
language of categories, Later we shall give some motivation for intro-

L
ducing something more general than topological spaces and give examples,
But to understand the theory of topoi we shall also require some familiarity
with the language of sheaves on a topological space. Now, I guess that

this notion is not that familiar to everybody, so I will not assume anything

. 3 ) - - 2)
known about it. I will review the standard theory of sheaves of sets( ’

OVer topological spaces,

(1)Thcse notes were written with th: collabdration of J. Wiuthrop..

@')rEROIHEKDIECK «ill consider wuinly sheaves of sers, thus we shall omit this remark in the
future. However later he will introduce various algebraic structures. The reader, knowing
FAC, can take advantage of these lectura notes to strevghthen his knowledge of sheaf theory
by 'separating the topological propertiss frow the algebraic oneij

ITI-13-3 ' ITI-14-1
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14.-1. PRESHEAVES OF SETS. Let X be a topological space. We consider
the set & =0p(X) of open subsets on X , i.e. the subset Op(X) of the
power set Q(X)(l) defininé the topology on X . We recall that the axiows
of a topology require that Op(X) contain ¢ and X itself and be stable
under arbitrary unions and finite intersections. Op(X) 1is a partially
ordered set (with the ordering defined by inclusion) and therefore Op (X)
already forms a category, by abuse of language. We deﬁote this category
by & or Op(X) . As in any partially ordered set C if U,V are

objects U,V € C the set of "womomorphisms' Hom(U,V) from U to V is

either empty if U 1is not contained in V or contains just the "inclusion

map': US vV of U into V:
(1,1 Hea(U,V) =
+ U2y

the composition of arrows U -V = W 1is defined in the obvious way.

(We havevn; choice.) This particular construction of a category makes
sense for any partially ordered C whatever; it does not use the fact that
C=op®

In §ther words, the category Op(X) has as objects the open sets of
| 2)

X and as arrows the graphs of the inclusion relationms.

A presheaf F on X is, by definition, a contravariant functor

from the category Op(X) to the category of sets. In other words F goes

from the épposite category & of Op(X) to the category S8ets of sets.
Let us recall what that means:

1 . - .
>To every okject or the category, i1.e. to every open set U of X,

we associate a set F(U) , whose elements are called sections of F over

(l)ri—‘rom the French part = subset: B(X) = 2x ‘

(2)Thi i
s {s true for the category attached to an ordered set (§5,<): Graph < = {(x,y) €5 XSlx <y}
2 »

In our case’ § = Op(X) and < {is the inclusien <.

IR o g i /P -
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2) . . 1 .
to every inclusion U® V we associate a map:
(1.2) pt: F(V) + F(U)

between the corresponding sets (going in the opposite direction) where

u ) ' .
P, = F(1) 1is also denoted by the restriction symbol

(1.3) F(V) » F(W) [u = o2 (F®))

and the following "evident axioms are satisfied

1)

Transitivity: If another open set W contains V , i.e. U3V a7y

are inclusions of open sets in X , then we have arrows F(W) - F(V) = FU)
in the category of sets, preserving compositions. In other to the commu-
tative diagram on the left (see below) corresponds a commutative diagram on

the right

' U C—s vy F(U)<—— F(V)

(1.4) \ 1 | \ T

) W F(W)
In words:

Identity: F should transform identities into identities, i.e. to
: i »
the identity map U 51U corresponds the identity map F(U) = F({U) from

F(U) to itself.

The category Presh(X) = Honﬂ@Q‘Sets) of presheaves on X is defined

o ,
as the category of all functors & - Sets , ie. an object of Presh(X)

v

<
is a functor F: & = Sets.

f
A homomorphism F = G from a presheaf F to a presheaf G (both

over X) is, by'definition of homomorphism of functors,(z) i.e. a collection

(~1«) r'l‘—his terminclogy comes from an old direct definition of sheaves over X , in terms of an

étale covering space § g X (cf. next § ). . If U 41is open in X a section over U is
a map S: U~ S such that ps=1u-_.J

(8) =, oo -
EHOM(E;\DIECK prefer "homomorphism of functors' rather the synonimeus "natural transformatioa',
very common {n the categerical jargon;_}

I11-14-3
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of maps F(U) - G(U) (VU € 0bG(X))) compatible with the restriction maps;
i.e., for every open set U of X we have a map F(U) - G(U) , such that

the following diagram commutes

ry TP o

(1.6) - f r

TFV) W cn
where the vertical arrows are the restriction maps corresponding to U
. g
and V . Moreover, the composition F =+ G -+ H of morphisms of presheaves

is defined by considering in an obvious way the diagram

W
£EW) Ly B57 a)

» , FQU)
-0 T T ™) T
) V)

with all squares commutative.

This is the little ''general nonsense' needed to comstruct the category

Presh(X) . So far we have not used the properties of the catecorvy & (X)

of open sets we used just the properties of morphisms of functors =
"hatural transformations' , but we will use them now to define a particular

type of presheaves, the sheaves over X .

14.-2. SHEAVES - OF SETS. Thus we need to introduce some axioms on presheaves

characteristic of sheaves.

We shall express these axioms in terms of two properties:

Let F be a presheaf on X for every open set U "of X and for

every open covering {v.1. of UlU= U U.)(l) we consider the
1‘161 i€T i

restriction map of F(U) into each of the F(Ui) (Vi € I) and therefore

a map from F(U) to the product of the F(Ui)

(2.1) : : F(U) » 0 F(@U)
- i€X

(1)The union of the Ui can be defined in tenns of the partial ordering in 0p(X) by the

condltion that U is the Supremum of the U for LEI.

e e 1TTI-14-4
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Then F 1is separated i{f for any choice of U and of the covering
{u.3. ., the previous map F(U) =+ I F.) 1is injective.
41161 .. i =
i€l .
Let us state this property in another way. First of all the set

associated with any open U C X be a presheaf F 1is called the set of

(1
sections of F over U , and for any inclusion U% V the restriction map

F(V) 9 F(U) defines the set of restrictcd sections. Then the fact that a

‘presheaf F 1is separated means that for any open covering {Ui}iEI of

U(E Ob(0p(X)) a section of F over U is known iff all of its

:
i
{
i
3

restrictions to the U{ are known i.e. the arrow of (2.1) is an injective

FREWEINTEY

; arrow, i.e. we can write instead of (2.1)

b s st

(2.2) F) © T F(U)
i€l |

; which means, in words, that any section of F over U can be identified

"
]

5 with the collection of sections of its restrictions Ui for every 1

The second question arising, in characterizing sheaves as particular

; cases of presheaves, is whether any system of sections . = F<Ui> s Ui

open for every 1 € I , can be obtained by restrictions from a section

: F(U) over U= U U, . A necessary condition for such an F(U) to exist
i€1

is the "matching property':

i

(2.3) o, |U, N U = ;pj{Ui nu, ‘

for everj pair (i,j) € IXI . This is clearly necessary because of the

transitivity property of the restriction maps.

. - . .. :
Y “Ihls terminolozy comes from an old direct dafiniticm of sheaves over X, In terms of an

i . P
: etale covering space S 2 X (cf. mext § ). If U s open in X a section over U {s
=5 .sap S:‘U -+ 5 such that ps = Iu.j

" III-14-5
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DEF. 1.1. We say that a presheaf F over X 1is a sheaf if for every
U € 6b 6(X) and every open covering qf U the map (2.1) (which in generai
is not injective) is indeed injective (i.e. F 1is separated) and its image
consists of all elements of I F(Uj) satisfying the "matching propercy!
(2.3) for every pair (i,j) € IXI

We can write DEF. 1.1 in diagrammatic terms, as the condition that

the following sequence

(2.4) F(U)S T FWU.) 3 I F(U. N U.)
ier Y od,perxr  * J

is exact,

To interpret (2.4) we need to apply F to the two inclusions
. NU. » U, and U, NU. = U,; thus we have the two arrows
i : i i 3 i
-+ F ] - .
F(U) = F(U) \ui n U, and F(Uj) F(Uj) {Ui n U, The kernel of the

—’
double arrow F(Ui) -+ T F(UifﬁU.) means the system of 0 FU.)
; (1,HEIXI J ier ¢
such that both restriction maps agree for every pair (i,j) .

"The usual meaning of exactness (o Im = ker) is then verified in (2.3).

For two sheaves F and G a sheaf morphism F =+ G 1is by

definition the same as a presheaf morphism between F and G . Thus, we

can construct a category denoted by Top(X) (the categbry of sheaves over

X) which is a full subcategory of the category Presh(X) of presheaves
over X :
(2.5 Top (X) © Presh(X) = Homﬁ@o, Sets).

Now it is time to give examples to show that this notion of

sheaf is a very natural one; i.e., that sheaves occur very frequently.

III-4-6
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EXAMPLES. Let E be any set and let us define a presheaf F on X

by
(2.6) F(U) = Map(U,E) = E' TU € 6b(0p (X))
i.e. F(U) is the set of all maps from U to E .

| ' If we have U9 V , we consider F(V) = Map(V,E) and the restriction

map F(V) = F(U) 1is defined by restricting maps from V to E to maps

from U to E , i.e. 1f (¢: V #+ E belongs to Map(V,E) then ©|U: U ~ E
belongs to Map(U,E) . Since the restriction of maps is a transitive
operation, we have certainly defined a presheaf. This presheaf F defined by

(2.6) is in fact a sheaf. This means that whenever an open set U of X

M

is covered by a family Uy (1 I) then to give a map from U to E

amounts to the same as to give maps from Ui to E in such a way that

7

these maps 'match up" in the Ui M U, for every choice of (i,j) € IXI

In fact this would be even true if the Ui would not be open in X .

Therefore we have a sheaf called the sheaf of maps from X to E

Now, many sheaves which occur naturally in Mathematics are subsheaves
of this one, but to explain that I need to define subpresheaves and
subsheaves.

Let F,G be presheaves over X . Then we say that G is
a subpresheaf of F , and we write G99 F 1ff the two following conditions
are true:

a) For every open U C X, G{U) & FWU) (i.e. GU) 1is a subset of
F(U))

III-14-7



-154-

b) For every inclusion U + V of open sets U,V the restriction

map G(V) - G(U) 1is induced by F(V) + F(U) , i.e. we have an obvious

[

commutative diagram. This is what is called in general a subfunctor of

given functor,

In other words G 1is a subpresheaf of F iff it can be defined bv a

family of subsets G(U) of the given F(U) , and the onlv condition that

we need to impose is that the familv be stable under the restriction maps.

Now let us assume that both ¥ and G are sheaves over X . G 1is

a subsheaf of F iff G 1is a subpresheaf of F . So a subsheaf of F

consists of subsets -G(U) of the F(U) which are stable under the
restriction maps, according to the presheaf law, bpt now we need to make
sure that the presheaf G 1is also a sheaf, thus we need an extra condition..
It is evident that if G 1is a subpresheaf of a sheaf ¥, then G is
separated,vbebause if an open set U of X 1s covered by open Ui(i é 1)

as before, the G(Ui) determine the F(Ui)’ and It F(Ui) ~determines
‘ i€1 ~
F(U) because F 1is a sheaf, and F(U) determines G(U) .

We have just proved that a subpresheaf of a separated presheaf is

also separated. Now, what would it mean that G 1is not only separated but

also G 'is a sheaf? This would mean that the map U - G(U) is of local
Ezgg.<l) Summarizing: A subsheaf G of a sheaf F over X 1is defined
by the collection G(U) € FU) (U €6b6(X)) , compatible with restriction
maps and in which the property of a set belonging to the G(U) of local

nature.

1)

Ve say that a property P of open sets of X is loeal {f and oaly if for every open U
of X, P holds in X if P holds for aay open Ui of any open coveriny (U‘} of U
‘ ° tifier U :

ITII-14-8
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EXAMPLE. 1Let us assume that the previous sct E is a topological

space and

1 ' . . . .
from U to Ef ) where the composition of pes 1is theinclusion map of U

into X .

Then Cont (U,E) © Map(U,E) and this property is compatible with the
restriction maps (the restriction of a continuous map 1s continuous).
Besides we know that continuity is a property of

U+ E is continuous if and only if all the restrictions f Ui

of open Ui covering U are continuous.

of the sheaf of maps from X to E , viz.: the sheaf of continuous local

maps U -+ E .

Assume now, for instance that X 1is a differentiable variety (of any

fixed dif{ferentiability class ¢’ (r> 1), Cm) and that E 1is also a

. T .
differentiable variety (of the same C ) , then we can consider the set
of local differentiable maps Diff(U,E) and obtain a subsheaf of the

. 2
previous sheaf of continuous local maps...' >. It is well known
that the differentiability propertyis of a purely local nature, preserved

by restrictions: If U 1s covered by Ui then a map f: U+ E 1is

CT-differentiable iff the F[U,: U, @ B is C -differentisble for every i

. = H
for any open covering {Ui}iEI of U!

3 . -y ) .. . -
)Now we can extend this ad libitum, by taking for instance instead of

differentiable varieties, analytic varieties,...or algebraic varieties,...,

seo any kind of 'variety'' defines a kind of sheaves...

4)wa there is still another kind of example of subsheaves of a sheaf

in terms of fibre spaces:

h

“ . Feend A ‘.
Ateaves of germs of local (centinvaus C zralytic), elc.

; d-fferentiable A 21,

III-14-9

consider for each U the set Cont(U,E) of continuous maps

local character: A map:
to a family

Thus we have defined a subsheaf

f'.

<

- (1) . . : = S . N g
( “This case contains the previous one of VNap(U,S) ([ we eadow T with the discrete topolegs



Let us assume now that E -ié a fibre space over X , i.e. E,X arc

topological spaces and we considcr a continuous p: E 4 X of E énto X 1
- [;%c triple (E,X,p) 1is a general continuous {ibre space where X is the

base space, E is the total space and p the projcctiqu

Then for every open subset U of X let us look to the set T (U, E/X)
of all continucus maps s: U -+ E such that pes = lU . Such maps s are
commonly called sections of E over U (or just local sections if we do not
want to mention U) . For any inclusion US V we have an induced map
(v, B/X) » TWU,E/X) , i.e. the restriction mapsrtrausform V-sectious in
U-secticns. Now 1t is very ciear that a map s: U 2 E 1is a continuous
section of U over X 1if and only if the rcstrictiog maps 32”4 -+ E are
continuous sections over Ui for any choice of an open covering of U ,

This sheaf ic called the sheaf of local sections of the fibre space E

It is because of this parvticular situation that the name section of F. over
U was introduced.

Therc,gre any other examples suggested by the audience?

Schanuél suggested tha£ it is convenient to point out that the previous

example can be obtained from this one (sheaf of local continuous sections

[ms

of a fibre space) by just considering the product EXX..., Grothendieck agrees.

If E 1is endowed with the discrete topology and we introduce the product

™

topology in XX E then the previous sheaf can be interpreted also as a

. - P . |
sheaf of local sections of XXE 2 X (where - denotes the projection on

the first factor). Then a section s: U =+ XXE be identified with é

function U 24 E (x = (x,f(e)) , and this property is compatible with

Testriction maps,...

1)

P 1s cot assuzed o be onto.

o TIT-14-10 .
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IS

Are there any further examples?.....
«+....Let me point out some more examples:

Let X be a locally cbmpact topological space, and 1if ve associate
with any open set U of X the set of RADON measures U , this property
is compatible with restriction maps. Besides this property 1s local and we
get a sheaf (the sheaf of Radon measures on open sets of the f.c.s. X).

If X 1is a differentiable variety we can consider the sheaf of
distributions on X (where a distribution is a continuous linecar functional
over vector spaces of local functions on X...). Distributions can be
localized and we get a sheaf again.

Another example:

For every open set U of X let us assign the subsets of U closed
in U . Then we have the transitivity property of restriction maps and
we obtain a presheaf. This presheaf is a sheaf because C C ﬁ is closed
in U 4iff ¢CnN Uy is closed in Uy for every covering of U , (i.e.

the property of being closed is a local property).

Hh

In general any properties of subsets of an open set of a local nature

enables to define a sheaf on X , for instance if X is an analytic variety

we can define a sheaf of local analytic subsets of X .

Generall? speaking one can say that sheaves are the ﬁost systematic
tool to obtain global infbrmation, starting from local information, i.e.
sheaves enables to "integrate'' local data to global properties.
Now let &€ = (E,X,p)(€ for short) be a:fibre space over X . We associate

, called the sheaf of continuous local sections of E

S

to E a sheaf E

I1I-14~11
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By associating with every fibre space E over X the sheaf E we
obtain a functorial correspondence E A,E . In other words if we have
a morphism E - F of fibre spaces over X (that means a continuous map

between total spaces making commutative the triangle below):

this allows us to define a morphism E - F . In fact, whenever we have a
section s: U 2 E on an open set U of X , we obtain a section feos of
F over the same U . This maps s = fos are compatible with restriction

maps so we are going to obtain a homomorphism of sheaves £: E-> F . The

map £ 2 f for a variable f 1is compatible with composition of maps between

fibre spaces over X and thus we obtain a functor:

(1.3) Fib(X) = TopX)

form the c;tegory of fibre spaceé ovef X (denoted by Fib(X)) to the
categori Top(X) of sheaves over X . |

The;fi;st question that might come to our minds is, can we reconstruct
an object in Fib(X) Jjust by knowing its image in Top(X)?,>i.e. can we
feconstruct a fibre space &€ over X in terms of E ; (the corresponding

sheaf). In formal terms we would like to know whether or not the functor

(1.3) is fully faithful?

We shall see that this is not so, as we can convince ourselves quite

readily. In order to see it let us consider the particular case when X

is reduced to a single point e, X = {e} . Then the category of fibre spaces

over a ome-point space is just equivalent to the category of topological

spaces, because for any such space E there is just one map E - {e} .

I1I-14-12
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Therefore Fib(e) = ¥ (category of all topological spaces). On the
other hand, what is the category of sheaves Top {e} over a one-point

space [e} ? We consider again the maps associating with {e} the sections

{e} +E . Up toa canonical equivalence a sheaf over a one-point space is
known‘iff we know the corresponding E . Thus the functor (1.3} reduces,
when X = {e} to a functor: ¥ » Sets from the category of all topological
spaces to the category of sets, which associates with the topological space

E the underlying abstract set, i.e. we obtain a forgetful functor, in which

we just 'forget' the topology of E. Now it is obvious that this functor
is not fully faithful, i.e. we can't recover the topology of E from its
underlying set. Therefore to give a fibre space & over X 1is something

much more precise that to give the sheaf E of local continuous sections.

14.~-3.THE CATEGORY Et(X) OF £TALE COVERINGS OF X . We can wonder now
whether or not we can define some full subcategory (ﬁt(X)) of the
category Fib(X) of fibre spaces over X , such that the restriction to
£t (X) of the functor (1.3), becomés fully faithful. For instance in the
case of a one-point space {e} , which are the topological spaces whose
topology isuknown if we know the corresponding underlying set? There are
several choices. One of them would be to introduce the discrete topology;
for a given set § the;e is just ome discrete topology over S . Therefore
if we take the restriction of the functor (1.3) to the category of discrete
topological spaces over {e}l we obtain an equivalence of categories. Now
we want to generalize this categorical equivalence to the genmeral case of a

general basis X . Thus we want to define a full subcategory of Fib(X)

I11-14-13
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which in the {e} case reduces to the category of discrete topological
spaces over {e} . The property which looks '"nice" is thus of a topological

space E which is étale over X . We shall define it!

A continuous map 7: E » X between topological spaces is called éEélE
if it is a local isomorphism, in the followiﬁg'sense:
For every point x € E there exists an open neighborhood ‘V C E of
x such that 7(V) 1is open in X such that 7 1induces a map from V into
(V) whicﬁ is a homeomorphism; whicﬁ means that ﬁ looks like a collection
of local homegmorphism between some open sets of the space E upstairs

and their projections 7 (V) downstairs.

When this property helds we say also that g is an étale morphism
between the topological spaces E,X . This is in fact a pretty old one in
the theory of functions of one complex variable, where certain maps appear

which are étale over an open subset of the complex plane.

Let us give some examples of "étaleness'.

The mo;t evident case is the inclusion map U =+ X of an open set U
into X . This is the standard model!

Anothe;,example: Let us take a discrete topological space I , i.e,
an abstract1set endosved I endowed with its discrete topqlogy and let us
consider the product space E = IXX . This means that we take the disjoint
some of the copies aXX (a €1I) , which ére open in E . Then the
projection map IXX - X reduces to the "identity map" (a,x) » x on these
open copies of X .

Now we shall construct the category £t(X) of atale covering spaces

of X , which is a subcacegory of Fib(X) . Let us look at the restriction

iT1-14-14
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31 - functor (1.3) (going from Fib(X) to the category Top(X) of sheaves
over X) to the subcategory £t(X) . Then we get the generatication of the
case of discrete spaces over a one point space {e} that we were loocking

for! We obtain an equivalence of categories:

3.1 ‘ Et (X) 3 Top (X)

on their own (étale coverings of X e objects of £t(X)} and we can
jiggle back and forth between both languages; It turns out that for certain
operations that we can perform on sheaves, the language of sections is by
far the most convenient and in others the language of étale spaces is better.

EXAMPLES. Now maybe I should give some examples. Is there a suggestion?
QUESTION: 1Is thera no translation in Eaglish for the French adjective éggig?
Answer: No, rhis is a question that was raised about fiffeen years ago. In Freuch

which means a space "spread out over another’,

’ ’ -
we say: un espace etale’ dans un autre...,

but in terms of a merphism, to say that it is "spread out” doesn't look good, so why not
introduce another word into English...? Duskin asks why not say jué: a local homecmorphisa?
Grothendieck's aﬁswer is that when we deal in analogous coniexts with differentiable, analyric
or algébraic spaces we would like to use the same word) since the formal properties are the
same (instead of introduclng local diffeomorphisms, Yocal biholomorphic maps, ete.). It is

&9

better to have a word which applies to all these parficular cases... .

QUESTION: Is it true that the oldest examples of &tale maps
come from the construction of Riemann surfaces with several copies of the
T-plane?

Answer: Yes, provided you drop the branch points! All right, I will
; give this example: Let us take the map £: T + € of the affine complex
g line, in itself given by x -+ x  (n=2) . Then £(0) = 0 . Then the

Lo

* % ,
restriction flC onto itself (£(0) =0) , T =°¢ - {O} is etale. 1In

fact the fibre over an x # 0 on the second plane is the set Xy sXgs e e, X

™

Later’on in private conversation GROTHENDIECK told me that also in his native German the
word etale is used,..instead of looking for a cranslation.
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of the n nth—roots of x insuchawaythat inchoosing one of them, the

. . . "~ _th - .
others are obtained by multiplication with the n™ roots of unity

exp(Znikn—l) (h = 0,1,...,n = 1) . Then for any open neighborhood U of x

not containing O obtain n copies of U covering U homeomorphically.
Thus we see a difference in behavior of the map according to whether or not

¥ = 0 . The restriction to a neighborhood of zero is not étale (0 is a

ramification point).
2) . . £
The previous example can be extended to any dominant morphism X - Y

(¢ f(X) is dense in Y) between two complex irreducible non singular curves.
Throwing out finitely many points of Y (ramification points) the restriction
-1 . . .

of the map f to X - Uf (R) (R-ramification points) is étale.

R
3 . - - . .
) A third example of covering étale everywhere is the covering map

2 + X of a topological connected manifold by its universal covering space .
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