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Tools for the Advancement of Objective
Logic: Closed Categories and Toposes

F. William Lawvere

The thesis is that the explicit adequate development of the science of
knowing will require the use of the mathematical theory of categories.
Even within mathematical experience, only that theory has approxi-
mated a particular model of the general, sufficient as a foundation for a
general account of all particulars. Arising 50 years ago from the needs of
geometry, category theory has developed such notions as adjoint func-
tor, topos, fibration, closed category, 2-category, etc., in order to provide:

(1) A guide to the complex, but very non-arbitrary constructions of
the concepts and their interactions which grow out of the study
of space and quantity.

It was only the relentless adherence to the needs of that basic subject
that made category theory so well-determined yet powerful. When
some schools of category theory have gone astray, it has usually been
due either to neglecting too long that specific goal of studying space
and quantity better, or to ossifying some partial determination of what
space and quantity are. If we replace "space and quantity" in (1) above
by "any serious object of study," then (1) becomes my working defini-
tion of objective logic. Of course, when taken in a philosophically proper
sense, space and quantity do pervade any serious field of study. Cate-
gory theory has also objectified as a special case:

(2) The subjective logic of inference between statements. Here
statements are of interest only for their potential to describe the
objects which concretize the concepts; here by describing, we
mean both commenting on the objects constructed and indicat-
ing desiderata for their construction.

Specifically, we need, for example, a mathematical model of the fol-
lowing philosophical position. Within thinking:
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(a) Subjective logic is a part of objective logic, which also reflects
and partly guides construction in the latter.

(b) Thinking itself is a part of being, which reflects being and
guides our action on it.

(c) One of the many aspects of being is (b) itself, which is therefore
reflected to manifest itself as (a).

(d) Considered as a process within being, (a) is a central feature of
thinking which a science of thinking must address.

Figure 1.

I believe that there is a second central feature of thinking: individuals
think, but so do clans, "schools of thought," professions, social classes,
nations, etc.; thinking takes place in brains, but also in schools, newspa-
pers, meeting houses, etc. - i.e., in material institutions which people
have created for the purpose of mutually transforming individual
thinking and collective thinking into each other.

An explicit philosophy, dealing with both the mutual transformation
of subjective logic and objective logic, as well as the mutual transforma-
tion of individual thinking and collective thinking, could be very help-
ful (for example, when reforming the schools) and adequate
mathematical models will be an essential basis of clarity.

1. Categorical Refinement of a Hegelian Principle

A very generally occurring specific kind of process is the following. A
category *B of particulars is presented to thought and measured against
an abstract distillation l̂ of previous concrete thoughts. There results an
abstract general & partly expressing the essence of Sbut permitting cal-
culation and speculation within itself. The acquisition of J? permits the
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construction of the concrete general C, a category pictured as containing
both all the possible objects of essence /las well as all the ^-respecting
transformations and comparisons between these possible objects. At
least as important as the calculation in .#is our power to investigate by
pure thought the objects in C (recording perhaps some of the results in
JQ and thus to create plans. In particular, there is a functor $ — -» C re-
flecting (partly) each of the original particulars as one among the
.̂ -possibles.

Mathematical experience has shown that the above description can
be made even more precise and productive. In order that the measuring
can compare *S and 1^ Vmust also be a category. While a theory & may
have (within the abstract general) a useful subjective presentation
ft' — -> -#by means of "primitives" and "axioms," its objective result,
the concrete general C, depends only on Jl itself as the category present-
ed. The kind 2> of category that & is desired to be, must be a kind in
which ^participates too. Then an explicit model of the process can be
given as follows:

a category of functors from IS to l^and all natural transformations be-
tween them. This is the idea of "natural structure"1 (distilled in my 1963
doctoral thesis from examples in algebraic topology; there 'structure' is
taken in the sense of an abstract general). This .# typically specifies not
only the theorems true for all objects in 25, but also the kind of formulas
appropriate to 25 among which the theorems are found; externally spec-
ified primitives are not presupposed. Then:

the category of 2>-preserving structures of kind & valued in V. Here
'structure' is taken in its concrete general aspect. Thus, relative to *D and
V, the comparison functor 25 - > C= 25** is seen as an instance of the
standard Fourier map to the double dual, familiar from the work of
Stone, Pontrjagin and others in the 1930s that made explicit the relation:

D* -spaces «==» (D-algebras of variable quantities)0?

as an adjoint pair of functors with constant quantity V taken as dualiz-
ing object/space. There are many kinds of spaces, for we can take D =
Boolean (with V = 2) or continuous or smooth or combinatorial, etc.;
that is, D functions as an abstract general. These all arose from looking
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at particular spaces and their relationships. Similarly, the doctrine 2?
can be not only the notion of finite cartesian products (as in universal
algebra), but also of Barr regular (as in positive logic, etc.), and the con-
crete generals C which arise belong to f£>*-Cat where *D* is a dual doc-
trine, as the work of Makkai and others has richly demonstrated.
Change of doctrines 2?'~ — > 2), with its functorially induced changes in
the rest, is as much an everyday tool as is interpretation & — — » %. of
theories or morphisms M — > M' of -/^.-structures in C, since all these
have long been recognized to take place in categories, with all which
that implies. For example, an interpretation $ — — * 21 of abstract gen-
erals functorially induces a functor C — — * C' in the opposite direction
which compares the corresponding concrete generals. For example, if
my previous experience 1$ with cats has led to a theory Jl which in-
cludes that they have long tails, dropping that axiom leads to an Jt'and
a resulting C' which would provide for the possibility of the broadening
of my experience when I meet a Manx.

While subjective logic in the narrow sense might take I/just as truth-
values, a better example is the category of abstract sets and arbitrary
mappings (but for Lie theory, e.g., it might be appropriate to take some-
thing much richer, such as the category of smooth spaces, as the distil-
lation of knowledge presumed to be acquired). The category Vof sets
obeys various rich doctrines as alluded to above, but it is already quite
fruitful just to let 2? recognize merely that Vis a category. The possible
2>*s are then abstract theories of sets whose particular concretes in-

clude not only the constant *^but also the categories of variable and co-
hesive "sets" which may arise, for example, as categories "B of
particulars to be measured. Measurement of a given 'S might reveal, for
example, a pair of functors:

assigning sets to each particular, and measurement might even reveal a
triple of transformations:

which are natural (i.e., homogeneous with respect to all particular com-
parisons B » B' in 25) and satisfy, for example, sr = 1P = tr. An initial
version of A. would be just the finite category:
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defined by the same equations. Then C= 2?HomCfl,V) is the infinitely
rich category of concrete reflexive graphs whose scientific interest and
technological utility will probably never be exhausted; the functor
"B > C reveals that each of our given particulars B "is" at least a re-
flexive graph whose points P(B) are provided by $ also with a set A(B)
of arrow connections and with maps s(B), t(B), r(B) specifying which
points are the source and target of given arrows and which arrow is the
null loop at each point.

2. Deepening, Metrics, Unity and Identity of
Adjoint Opposites

In the above example I have used the pregnant observation of Mac-
namara and the Reyes that the logical interpretation of the word 'is'
should be just a map in an appropriate category, not necessarily an inclu-
sion map: to do otherwise is a cheap source of paradoxes. A related ob-
servation concerns the interpretation of 'and': it is well known that in a
category ft, categorical product is the right adjoint of the diagonal func-
tor %. _A-» Ax A JL* #(where .#x #is the product in ID-Cat), and
that if J? consists only of inclusions (i.e., J?is a poset as in prepositional
logic) then product reduces to conjunction. It is even exploited in proof
theory that for any category ft, the poset reflection ./? ~JL> %$ maps
products to conjunctions. However, as pointed out by Schanuel, the
most direct interpretation of everyday 'and' is very often product in a
non-poset, such as 'the position of the bird is determined by its altitude
and the point on the earth beneath if.

As posets often need to be deepened to categories to accurately reflect
the content of thought, so should inverses, in the sense of group theory,
often be replaced by adjoints. Adjoints retain the virtue of being unique-
ly determined reversal attempts, and very often exist when inverses
do not.

Great mathematical philosophers, such as Grassmann 150 years ago,
recognized the distinction between synthetic operations such as addi-
tion and the corresponding analytic operations such as subtraction, but
the nature of the correspondence cannot be characterized in terms of in-
verses, even for the posetal case of non-negative real numbers, where
the truncated difference is indeed the adjoint:
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This is the invertible rule which guides our calculation with bank ac-
counts, etc., y A a being always non-negative. In that example we could
recover the group property by passing to a larger system, but at the loss
of the useful criterion a I> b iff b A a - 0. However, if + denotes an idem-
potent operation such as subjective disjunction of statements or objec-
tive union of closed regions in space, then there is no group enveloper,
but the analytic adjoint 'yes..., but not.. / operation may exist. This ad-
jointness is all that is needed (together with the usual lattice axioms,
which are also just adjointnesses) to derive the properties of the topo-
logically crucial boundary operation:

boundary (A) d|f A and (yes but not A)

Sometimes a given functor has both left and right adjoints. For exam-
ple, the inclusion of truth values V0 > Vra into distance values, where-
in true is 0 ("right on") and false is «« ("making it true is prohibitively
expensive")/ has both left and right adjoint retractions, one (feasibility)
whereby every finite distance is true and the other (frugality) whereby
every non-zero distance is too much to be truly necessary and hence
false. Now, both V0, V«, are closed categories and hence serve, in a way
related to but different from the ways discussed in section 1, as abstract
generals: the corresponding concrete generals are the categories of
posets and of metric spaces (not necessarily symmetric, with distance-
decreasing maps) respectively. The trio of little adjoints covariantly in-
duces bigger ones: a poset is a special metric space in which all distanc-
es are either 0 or °° but the points of a metric space are ordered in two
extreme ways, frugality saying x —-> y iff it costs nothing, but feasibil-
ity permitting x _•_» y iff the cost is finite. (There are many precise
determinations of the category Vm of distances; for example, some have
<*> = one trillion, so finite just means "under budget.") This feasibility re-
lation induces an equivalence relation on points (and on maps) of met-
ric spaces, two points x, y being in the same component iff the distances
in both directions are finite; this decomposition, in spite of its purely
logical character, turns out to be intimately related to the geometrical
notion of rotations, for these are essentially the only automorphisms of
metric spaces which retain any activeness after this components functor
has neglected all those which move all points by at most a bounded
distance.
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As another example of how the theory of closed categories can explic-
itly guide the study of metric spaces, note that the family of intervals
[0,d] in ¥„, provides a special family of metric spaces. Any small family
of objects in a complete category raises two questions: are the functions
(or properties), i.e., the maps in the category whose codomains are in
the family, coadequate to determine every object in the category? And
are the paths (or probes), i.e., the maps in the category whose domains
are in the family, adequate to determine every object? Isbell in 1960
showed the importance of these questions. A fundamental adjoint con-
struction by Kan (1958) has given rise to a measure of the failure of ad-
equacy by the so-called adequacy comonad TX e > X, where T is an
endofunctor of the big category giving for every object X the best ap-
proximation to it which can be reconstructed from the results of probing
it with paths parameterized by objects in the given small family, and
where e is the natural transformation directly comparing the approxi-
mation with the X being investigated (so adequacy holds if e is an iso-
morphism). In our example, where the big category is the concrete
general of all metric spaces determined by the closed category V^ of dis-
tances and where the small family is the family of intervals [0,d], for d
finite from V,,, itself, the path-approximation FX to X turns out to be the
geodesic remetrization of X; for example, if X is the surface of the earth
metrized by its obvious embedding in the earth itself, then EX _£_» X
is the distance decreasing map from the same surface metrized by min-
imum-distance paths which stay on the surface.

Conversely, many notions suggested by the study of metric spaces,
such as radius, engulfing, etc., have precise analogues for concrete gen-
erals enriched in any (even non-posetal) closed categories V.

Sometimes (opposite to the case discussed above) a functor p which
has both adjoints is itself a common retraction for both of its adjoints.
Any such functor is a precise realization of the allegedly nebulous no-
tion unity-and-identity-of-opposites. For the two adjoints are then two in-
clusions of subcategories, united in the domain of p, opposite in the
precise sense given by the adjointness itself, yet both identical in them-
selves with the codomain of p; moreover, for each object X in the do-
main of p there is a well-defined "interval" Lp (pX) -—> X -—»Rp (pX)
with endpoints in the two opposite subcategories, within which X must
lie, but determined only by the partial knowledge pX about X. As a very
simple example, consider the case where p is any surjective, order-pre-
serving map of finite, totally ordered sets. A more general image is that
the domain of p is structured as a "cylinder" with two identical ends
which are the two subcategories and with threads running through it
from each object on the left end to the corresponding object on the right
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end; all the objects with a given p-value are on one thread, and certain
of the comparison maps between them point along the thread. Functo-
riality gives ways of passing between threads. However, in many exam-
ples even the approximating interval around X is not a poset; also
special care must be taken not to assume that the two opposite subcat-
egories are disjoint, for the two ends of the cylinder often touch in
certain points.

From examples previously discussed, we can assemble an example of
UIAO (unity and identity of adjoint opposites). Reinterpret the distance
category V,,, as a category of times and consider the functor category
1/VJS: its objects are systems of sets Xt (for t in V.J of possible states

equipped with a definite law of becoming Xt- > Xs for s 2: t which sat-
isfies the evident transitivity conditions, and its maps X ——-> Y are sys-
tems Xt ——-> Yt of l^maps which compatibly compare the two
respective laws of becoming. There are two opposite subcategories of
very special systems: in one the change of states X0——> can be arbitrary,
but Xf—-» Xs for s & t > 0 is always an identity map so that "everything
happens right at the beginning"; in the other -—» X.. can be arbitrary
but Xt > Xs for oo > s > t is always an identity so that "everything hap-
pens right at the end." Suppose, for an arbitrary X, that we know only
Y - p(X) = [X0 > XJ, a pair of sets structured by a single map, but
that we are as yet ignorant of the details of what happened in between.
Then we can start further investigation from two approximations LY
——» X —> RY where LY, RY are in the two opposite subcategories and
the arrows are maps in 1/Va£. The two subcategories are in themselves
isomorphic to 1/V<P: (which has as objects single maps Y^e-—> Yfabe

of sets) and the functor p which adjointly unites them is induced by our
previous inclusion V0——» V«. Here the categories V0, V«, are playing a
different role as abstract generals, more akin to the one discussed in sec-
tion 1: they specify kinds of models of becoming.

Also a concrete general 11 of being, whose abstract general specifies
a kind of cohesiveness or unity of being, may participate in UIAO's. To
take an example, Cantor's abstraction process IB ——» If assigning to
particular cohesive spaces their abstract sets of points, extend (along
<8 ___» <$ * * d~f <0) to a functor p whose left and right adjoint inclusions
are the subcategory ^——> II of discrete spaces and V-—^11 of codis-
crete spaces respectively. The contradictory properties of an abstract set,
namely that its points are completely distinguished yet indistinguish-
able by any clear property, are resolved into two opposite spaces with
the same points: the discrete one in which no connected motion exists
to blur them and the codiscrete one in which every point is instantly
blurred into every other one; though there is the canonical LS » RS
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map of discrete to codiscrete which induces an isomorphism on S upon
applying p, typically the only maps ("clear properties") from a codis-
crete to a discrete space are constant. The relevant abstract generals say
that a map in 11 should preserve cohesion, but a discrete space D has ze-
ro cohesion to preserve, so maps D > X are arbitrary on points; dual-
ly, a codiscrete space C has in a vacuous way infinite cohesion, so again
maps X » C are arbitrary on points; these remarks explain the two
adjointnesses. The notion of connected movement in a space X (discrete
or not) can be usefully modelled by maps T -—> X in 11 where T is a
connected space; meaning that rc(T) is one point where n is the further
left adjoint 11 > T^to the discrete inclusion and called 'the set of con-
nected components of '.

Objective logic must recognize the quality of dimensionality in spac-
es and construct quantity-types for measuring it. I have outlined else-
where (Lawvere 1991b) a program for doing this in terms of inter-
mediate UIAO's 11 > 14 > ̂ related by a left-to-right "crossover"
determination of Hegel's jump idea. I showed its correctness in some
important examples, and in particular defined dimension one as the
lowest UIAO between 11 and Vfor which n(LnX) = nX for all spaces X
in 11, that is, all connecting which can be done can be achieved with
one-dimensional paths. However, here I will approach dimension more
directly in connection with a combinatorial example.

3. Realization of Plans

One should not despise the codiscrete spaces 1? > 11, for their very
contrast with the discrete ones permits them to be seen as connected
"blobs" of various dimensions which can be glued into quite arbitrary
combinatorial plans. What such a plan envisages is a real space (or
building, etc.) to be constructed, using previously-acquired compo-
nents: a two-point blob is imagined as a continuous one-dimensional
segment with two endpoints, a three-point blob as a continuous two-di-
mensional triangle with three edges, a four-point blob as a three-dimen-
sional tetrahedron, etc. The simplest example of a non-codiscrete space
obtained by gluing together blobs is a one - dimensional triangle consist-
ing only of the edges. Certain considerations would require that even
the one-dimensional segment be recognized to have an infinite-dimen-
sional microstructure, but whatever may be the precise nature of these
real components to be used in carrying out the plans, their specification
can be considered to be a standard additionally given functor V * 1L
Both the gluing of codiscrete pieces to see plans and also the gluing of
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standard pieces to carry them out, are realized as colimits in the catego-
ry 1L The standard-space functor V- — -> 11 induces an adjoint pair:

where each space is considered as the structured ensemble of possible
probings of it by standard spaces, and the left adjoint return "realizes"
any conceivable V°P — E-> Vby using it as a scheme to glue together
standard pieces. But wait.

As the relation between the subjective and objective can be reflected
into the subjective, for example, as the relation between presentations
by axioms and invariant theories within the abstract general, so can it
be reflected into the objective, as in our present description, using con-
crete generals of spaces and of combinatorial plans, etc. But there is a
difference. Speculation costs little, and it seems that calculation can go
on indefinitely; thus perhaps countable infinity is not such a bad ideal-
ized model of those aspects of subjectivity. By contrast, a plan which can
be carried out must be finite.

Thus we introduce a reduction f^t^op - > "O'of our dreamy scale of
plans, in order that the composite 11' Jsfi-adj^ <jA">p - » U comes clos-
er to modelling constructions which can really be done. For example, all
homotopy types of spaces arise from the standard choice 11' = V^ff,
where ^ - > V (inducing the reduction) is just the inclusion of the
category of finite sets. In general, such a composite 11' - > 11 reflects,
within objective logic, the subjective-objective opposition itself; it is the
concrete result of a comparison between two abstract theories of space,
a combinatorial one and a continuous one.

4. Detailed Models of Becoming

Sometimes the objects in being to be constructed are actually in the
realm of thinking (in the broad material sense we are giving to think-
ing). For example, a book may be constructed from an outline. There are
also shorthand notes for delivering a speech (wherein the symbols in
the combinatorial plan are to be realized by syllables of sound) and li-
brettos for operas with musical symbols, etc. If we regard the desired
product to be an audio tape of the speech or a video tape of the opera,
then the geometric sort of realization discussed in section 3 applies.
However, in those cases the plan is primarily a plan for a performance, a
kind of becoming that we must also effectuate when we actually carry
out the construction of a house or of a machine. The study of the catego-
ries and functors appropriate to this problem sometimes goes under the
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name of "control theory," but these categories have also specific fea-
tures in common with those arising in continuum mechanics in connec-
tion with the tempering of metals, etc. They involve taking into the
already acquired *V (hence into the abstract generals J? which arise) a
model of time which is not merely a poset or group, but is a category
which also contains the possible controlling processes as maps. The cor-
responding concrete generals are categories whose objects consist of
systems of states evolving in a (partly) controlled manner.

Apart from generalities about evolution of states (controlled or not),
there are two further important features which make possible specific
mathematical treatment. First, states are states of a body (often the rela-
tion is contravariant) and bodies have parts. The part-whole relation is
not merely a poset, but rather each part is included in the whole in two
senses, since each part is both itself and its relationship; we can call these
two kinds of arrows the passive and active inclusions. In its purest form
such a body is the category B:

equipped with a faithful labelling functor to:

whose sections correspond to the parts. A system of states for B is a
functor B°P —£-+ V (where V might be taken as sets or spaces). The
passive maps in B then induce projections X(W) s> X(P) for each part
P, each state of the whole involving in particular a state of P; these taken
together induce a map X(W) »Ilp^XfP) into the product of the state
spaces of all the parts. One usually assumes that this passively induced
map is an isomorphism or at least an inclusion: the state of the whole is
nothing but collectively the states of all its parts. But there are still the
maps X(W) » X(P) obtained by applying X to the active maps in B;
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these help to express how the collective state will influence the state of
each part P. An appropriate model of time in this context is as another
functor B°P —E-> ^in the same category as X. The passively induced
maps T(W) ——* T(P) are individually assumed to be isomorphisms if we
want to express that in a motion or development of B as a whole, the
times of each part are synchronized. But there are still the actively-in-
duced maps T(W) ——» T(P) which I will take as expressing the delay
with which the individual states of P can respond to the influence of the
collective states. Then a. motion or development of B which follows the
specific laws inherent in X and T is just any map T •—-> X which is ho-
mogeneous (or natural) with respect to each of the maps in B. In systems
amenable to differential equations, the delays are taken as infinitesimal
translations, but they may also be the finite delays inherent in physical
connecting "wires."

The second important feature (making calculation feasible) of the ev-
olution of bodies with parts is the following. In the thinking of the body
politic, democracy begins with the people U whom individual P knows.
Similarly, in a fluid body, the immediate influence on the motion of a
particle P comes from the particles very close to it, considered, in par-
tial-differential equations, to constitute an infinitesimal neighborhood
U of P. Thus, we can deepen our "purest" model B by introducing an in-
termediate layer of objects U with sub-whole inclusions U ——-> W,
across which some of the passive and active inclusions of the various
P's factor. The new category § zs B obtained depends on the precise in-
terlocking of these sub-wholes (essentially a binary relation between P's
and U's). If the state functor X previously discussed is the restriction of
an X defined on 6, then the active influences factor as:

making explicit the way in which the immediate influence of the state
of the whole on P's state depends only on the state of his neighbours (of
course including his own state X(U) ——> X(P), due to the factored pas-
sive inclusion P » U). The product condition placed previously on X
becomes over § the inverse limit condition X(W) = lim X(U), the well-
defined part (of the product over all objects of § ) consisting of logically
possible collective states.

If V is a topos, so are the categories <P;B°P/ <j/B°Pin which our state
and time objects reside and map into each other; there are many objects
in these categories which satisfy neither of the two extreme isomor-
phism conditions. But some of these objects serve, as in other parts of
topos theory, to internalize (to the concrete general determined by the
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abstract body structure B) the logical and other algebraic calculations
we may need to do on functions of state and time. There may also be
means, available to objective logic, for making precise the idea that the
sub-wholes U of W are qualitatively smaller, as is true at least in the case
of the partial-differential equations of continuum motion. Namely, cer-
tain very special objects D in l^admit use as "fractional exponents," via
a functor ()1/D right adjoint to the usual function-space functor ()D. In
the same way, the idea that the time delays in T are "immediate" may
be made precise.

Conclusion

Despite some simplifications in the above, needed for rapid description,
I hope that I have made clear that there is a great deal of useful precision
lying behind my illustrations, and a great deal to be developed on the
same basis. Thus I believe to have demonstrated the plausibility of my
thesis that category theory will be a necessary tool in the construction
of an adequately explicit science of knowing.

Note
1 A simple example of natural structure: Galois observed that the roots of a

particular polynomial equation can be permuted, leading to a certain group
G as abstract general. The corresponding concrete general is the category of
all possible permutation representations of G. (It can be shown that each of
these possibles actually arises from a suitable system of polynomial equa-
tions.) This example is related to another one. Over a particular domain in
the plane, there are varialbe quantities; it was observed that these quantities
can be added and multiplied, leading to the abstract general D which is the
algebraic theory of commutative rings. The corresponding concrete general is
the category of all possible commutative rings. (Algebraic geometry shows
that every one of these possibles, C, is actually the system of all variable
quantities over a suitable domain space, whose dimension and quality de-
pends on the ring C.
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