Conceptual Mathematics, 2nd Edition

In the last 60 years, the use of the notion of category has led to a remarkable unification and simplification of mathematics. *Conceptual Mathematics* introduces this tool for the learning, development, and use of mathematics, to beginning students and general readers, but also to practicing mathematical scientists. This book provides a skeleton key, making explicit some concepts and procedures that are common to all branches of pure and applied mathematics.

The treatment does not presuppose knowledge of specific fields, but rather develops, from basic definitions, such elementary categories as discrete dynamical systems and directed graphs; the fundamental ideas are then illuminated by examples in these categories.

This second edition provides links with more advanced topics of possible study. In the new appendices and annotated bibliography the reader will find concise introductions to adjoint functors and geometrical structures, as well as sketches of relevant historical developments.

Conceptual Mathematics, 2nd Edition

A first introduction to categories

F. WILLIAM LAWVERE SUNY at Buffalo

STEPHEN H. SCHANUEL SUNY at Buffalo

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521894852

This edition © Cambridge University Press 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1997 Second edition 2009 5th printing 2015

Printed in the United States of America by Sheridan Books, Inc.

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Lawvere, F.W. Conceptual mathematics : a first introduction to categories / F. William Lawvere, Stephen H. Schanuel. – 2nd ed. p. cm. Includes index. ISBN 978-0-521-71916-2 (pbk.) – ISBN 978-0-521-89485-2 (hardback) 1. Categories (Mathematics) I. Schanuel, S. H. (Stephen Hoel), 1933– II. Title. QA169.L355 2008 512'.62–dc22 2007043671

ISBN 978-0-521-89485-2 Hardback ISBN 978-0-521-71916-2 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

to Fatima

Contents

	Preface	xiii
	Organisation of the book	xv
	Acknowledgements	xvii
	Preview	
Session 1	Galileo and multiplication of objects	3
	1 Introduction	3
	2 Galileo and the flight of a bird	3
	3 Other examples of multiplication of objects	7
	Part I The category of sets	
Article I	Sets, maps, composition	13
	1 Guide	20
Summary:	Definition of category	21
Session 2	Sets, maps, and composition	22
	1 Review of Article I	22
	2 An example of different rules for a map	27
	3 External diagrams	28
	4 Problems on the number of maps from one set to another	29
Session 3	Composing maps and counting maps	31
	Part II The algebra of composition	
Article II	Isomorphisms	39
	1 Isomorphisms	39
	2 General division problems: Determination and choice	45
	3 Retractions, sections, and idempotents	49
	4 Isomorphisms and automorphisms	54
	5 Guide	58
Summary:	Special properties a map may have	59

viii		Contents
Session 4	Division of maps: Isomorphisms	60
	1 Division of maps versus division of numbers	60
	2 Inverses versus reciprocals	61
	3 Isomorphisms as 'divisors'	63
	4 A small zoo of isomorphisms in other categories	64
Session 5	Division of maps: Sections and retractions	68
	1 Determination problems	68
	2 A special case: Constant maps	70
	3 Choice problems	71
	4 Two special cases of division: Sections and retractions	72
	5 Stacking or sorting	74
	6 Stacking in a Chinese restaurant	76
Session 6	Two general aspects or uses of maps	81
	1 Sorting of the domain by a property	81
	2 Naming or sampling of the codomain	82
	3 Philosophical explanation of the two aspects	84
Session 7	Isomorphisms and coordinates	86
	1 One use of isomorphisms: Coordinate systems	86
	2 Two abuses of isomorphisms	89
Session 8	Pictures of a map making its features evident	91
Session 9	Retracts and idempotents	99
	1 Retracts and comparisons	99
	2 Idempotents as records of retracts	100
	3 A puzzle	102
	4 Three kinds of retract problems	103
	5 Comparing infinite sets	106
Quiz		108
	e the quiz problems	109
	n of opposed maps	114
	uiz on pairs of 'opposed' maps	116
Summary: On the equation $p \circ j = 1_A$		117
Review of 'I	-words'	118
Test 1		119
Session 10	Brouwer's theorems	120
	1 Balls, spheres, fixed points, and retractions	120
	2 Digression on the contrapositive rule	124
	3 Brouwer's proof	124

Contents		ix
	4 Relation between fixed point and retraction theorems5 How to understand a proof:	126
	The objectification and 'mapification' of concepts	127
	6 The eye of the storm	130
	7 Using maps to formulate guesses	131
	Part III Categories of structured sets	
Article III	Examples of categories	135
	1 The category $\boldsymbol{S}^{\bigcirc}$ of endomaps of sets	136
	2 Typical applications of S^{\bigcirc}	137
	3 Two subcategories of $\boldsymbol{S}^{\mathbb{Q}}$	138
	4 Categories of endomaps	138
	5 Irreflexive graphs	141
	6 Endomaps as special graphs	143
	7 The simpler category $\boldsymbol{S}^{\downarrow}$: Objects are just maps of sets	144
	8 Reflexive graphs	145
	9 Summary of the examples and their general significance	146
	10 Retractions and injectivity	146
	11 Types of structure	149
	12 Guide	151
Session 11	Ascending to categories of richer structures	152
	1 A category of richer structures: Endomaps of sets	152
	2 Two subcategories: Idempotents and automorphisms	155
	3 The category of graphs	156
Session 12	Categories of diagrams	161
	1 Dynamical systems or automata	161
	2 Family trees	162
	3 Dynamical systems revisited	163
Session 13	Monoids	166
Session 14	Maps preserve positive properties	170
	1 Positive properties versus negative properties	173
Session 15	Objectification of properties in dynamical systems	175
	1 Structure-preserving maps from a cycle to another	
	endomap	175
	2 Naming elements that have a given period by maps	176
	3 Naming arbitrary elements	177
	4 The philosophical role of N	180
	5 Presentations of dynamical systems	182

Х		Contents
Session 16	Idempotents, involutions, and graphs	187
	1 Solving exercises on idempotents and involutions	187
	2 Solving exercises on maps of graphs	189
Session 17	Some uses of graphs	196
	1 Paths	196
	2 Graphs as diagram shapes	200
	3 Commuting diagrams	201
	4 Is a diagram a map?	203
Test 2		204
Session 18	Review of Test 2	205
	Part IV Elementary universal mapping propertie	°S
Article IV	Universal mapping properties	213
	1 Terminal objects	213
	2 Separating	215
	3 Initial object	215
	4 Products	216
	5 Commutative, associative, and identity laws for	
	multiplication of objects	220
	6 Sums	222
	7 Distributive laws	222
	8 Guide	223
Session 19	Terminal objects	225
Session 20	Points of an object	230
50051011 20		200
Session 21	Products in categories	236
Session 22	Universal mapping properties and incidence relations	245
	1 A special property of the category of sets	245
	2 A similar property in the category of endomaps	246
	of sets	246
	3 Incidence relations	249
	4 Basic figure-types, singular figures, and incidence,	250
	in the category of graphs	250
Session 23	More on universal mapping properties	254
	1 A category of pairs of maps	255
	2 How to calculate products	256

Contents		xi
Session 24	 Uniqueness of products and definition of sum 1 The terminal object as an identity for multiplication 2 The uniqueness theorem for products 3 Sum of two objects in a category 	261 261 263 265
Session 25	 Labelings and products of graphs 1 Detecting the structure of a graph by means of labelings 2 Calculating the graphs A × Y 3 The distributive law 	269 270 273 275
Session 26	 Distributive categories and linear categories 1 The standard map A × B₁ + A × B₂ → A × (B₁ + B₂) 2 Matrix multiplication in linear categories 3 Sum of maps in a linear category 4 The associative law for sums and products 	276 276 279 279 281
Session 27	 Examples of universal constructions 1 Universal constructions 2 Can objects have negatives? 3 Idempotent objects 4 Solving equations and picturing maps 	284 284 287 289 292
Session 28 Test 3 Test 4 Test 5	The category of pointed sets 1 An example of a non-distributive category	295 295 299 300 301
Session 29	 Binary operations and diagonal arguments 1 Binary operations and actions 2 Cantor's diagonal argument 	302 302 303
Article V	 Part V Higher universal mapping properties Map objects 1 Definition of map object 2 Distributivity 3 Map objects and the Diagonal Argument 4 Universal properties and 'observables' 5 Guide 	313 313 315 316 316 319
Session 30	Exponentiation 1 Map objects, or function spaces	320 320

xii		Contents
	 A fundamental example of the transformation of map objects Laws of exponents The distributive law in cartesian closed categories 	323 324 327
Session 31	Map object versus product1 Definition of map object versus definition of product2 Calculating map objects	328 329 331
Article VI	The contravariant parts functor1 Parts and stable conditions2 Inverse Images and Truth	335 335 336
Session 32	Subobject, logic, and truth1 Subobjects2 Truth3 The truth value object	339 339 342 344
Session 33	Parts of an object: Toposes1 Parts and inclusions2 Toposes and logic	348 348 352
Article VII	 The Connected Components Functor Connectedness versus discreteness The points functor parallel to the components functor The topos of right actions of a monoid 	358 358 359 360
Session 34	Group theory and the number of types of connected objects	362
Session 35	Constants, codiscrete objects, and many connected objects1 Constants and codiscrete objects2 Monoids with at least two constants	366 366 367
Appendices Appendix I	Geometery of figures and algebra of functions1 Functors2 Geometry of figures and algebra of functions as categories	368 369 369
Appendix III	themselves Adjoint functors with examples from graphs and dynamical sys The emergence of category theory within mathematics Annotated Bibliography	370 stems 372 378 381
Index		385

Preface

Since its first introduction over 60 years ago, the concept of category has been increasingly employed in all branches of mathematics, especially in studies where the relationship between different branches is of importance. The categorical ideas arose originally from the study of a relationship between geometry and algebra; the fundamental simplicity of these ideas soon made possible their broader application.

The categorical concepts are latent in elementary mathematics; making them more explicit helps us to go beyond elementary algebra into more advanced mathematical sciences. Before the appearance of the first edition of this book, their simplicity was accessible only through graduate-level textbooks, because the available examples involved topics such as modules and topological spaces.

Our solution to that dilemma was to develop from the basics the concepts of directed graph and of discrete dynamical system, which are mathematical structures of wide importance that are nevertheless accessible to any interested high-school student. As the book progresses, the relationships between those structures exemplify the elementary ideas of category. Rather remarkably, even some detailed features of graphs and of discrete dynamical systems turn out to be shared by other categories that are more continuous, e.g. those whose maps are described by partial differential equations.

Many readers of the first edition have expressed their wish for more detailed indication of the links between the elementary categorical material and more advanced applications. This second edition addresses that request by providing two new articles and four appendices. A new article introduces the notion of connected component, which is fundamental to the qualitative leaps studied in elementary graph theory and in advanced topology; the introduction of this notion forces the recognition of the role of functors.

The appendices use examples from the text to sketch the role of adjoint functors in guiding mathematical constructions. Although these condensed appendices cannot substitute for a more detailed study of advanced topics, they will enable the student, armed with what has been learned from the text, to approach such study with greater understanding.

Buffalo, January 8, 2009

F. William Lawvere Stephen H. Schanuel

Organisation of the book

The reader needs to be aware that this book has two very different kinds of 'chapters':

The **Articles** form the backbone of the book; they roughly correspond to the written material given to our students the first time we taught the course.

The **Sessions**, reflecting the informal classroom discussions, provide additional examples and exercises. Students who had difficulties with some of the exercises in the Articles could often solve them after the ensuing Sessions. We have tried in the Sessions to preserve the atmosphere (and even the names of the students) of that first class. The more experienced reader could gain an overview by reading only the Articles, but would miss out on many illuminating examples and perspectives.

Session 1 is introductory. Exceptionally, Session 10 is intended to give the reader a taste of more sophisticated applications; mastery of it is not essential for the rest of the book.

Each Article is further discussed and elaborated in the specific subsequent Sessions indicated below:

Sessions 2 and 3
Sessions 4 through 9
Sessions 11 through 17
Sessions 19 through 29
Sessions 30 and 31
Sessions 32 and 33
Sessions 34 and 35

The **Appendices**, written in a less leisurely manner, are intended to provide a rapid summary of some of the main possible links of the basic material of the course with various more advanced developments of modern mathematics.

Acknowledgements

First Edition

This book would not have come about without the invaluable assistance of many people:

Emilio Faro, whose idea it was to include the dialogues with the students in his masterful record of the lectures, his transcriptions of which grew into the Sessions; Danilo Lawvere, whose imaginative and efficient work played a key role in bringing this book to its current form;

our students (some of whom still make their appearance in the book), whose efforts and questions contributed to shaping it;

John Thorpe, who accepted our proposal that a foundation for discrete mathematics *and* continuous mathematics could constitute an appropriate course for beginners.

Special thanks go to Alberto Peruzzi, who provided invaluable expert criticism and much encouragement. Many helpful comments were contributed by John Bell, David Benson, Andreas Blass, Aurelio Carboni, John Corcoran, Bill Faris, Emilio Faro, Elaine Landry, Fred Linton, Saunders Mac Lane, Kazem Mahdavi, Mara Mondolfo, Koji Nakatogawa, Ivonne Pallares, Norm Severo, and Don Schack, as well as by many other friends and colleagues. We are grateful also to Cambridge University Press, in particular to Roger Astley and Maureen Storey, for all their work in producing this book.

Above all, we can never adequately acknowledge the ever-encouraging generous and graceful spirit of Fatima Fenaroli, who conceived the idea that this book should exist, and whose many creative contributions have been irreplaceable in the process of perfecting it.

Thank you all,

Buffalo, New York 2009

F. William Lawvere Stephen H. Schanuel

Second Edition

Thanks to the readers who encouraged us to expand to this second edition, and thanks to Roger Astley and his group at Cambridge University Press for their help in bringing it about.

2009

F. William Lawvere Stephen H. Schanuel